
\/

The Centre for

Computing History

www.CompuUngHistofy.ofg.uk

CORAL 66
LANGUAGE REFERENCE

MAKRJAL

Nl

k > MICRO FOCUS

CORAL 66

LANGUAGE REFERENCE

MANUAL

Version 3

Micro Focus Ltd. Issue 2
March 1982

Not to be copied without the consent of Micro Focus Ltd.

This language definition reproduces material from the British Standard BS5905
which is hereby acknowledged as a source.

/ \ / N

MICRO FOCUS

CX)PYRI(fflT 1981, 1982 by Micro Focus Ltd.

ii

Micro Focus Ltd.
58,Acacia Rood,
St. Johns Wbod,
London NW8 6AG

Telephones:
017228843/4/5/6/7

Telex:

28536 MICROFG

AMENDMENT

NUMBER

CORAL 66 LANGUAGE REFERENCE MANUAL

AMENDMENT RECORD

DATED INSERTED BY SIGNATURE

iii

DATE

PREFACE

This manual defines the programming language CORAL 66 as implemented in
Version 3 of the CORAL compilers known as RCC80 and RCC86. Now that
British Standard BS5905 has become the main source for CORAL
implementation its structure and style have been adopted.

Con5)ared to previous version's of the RCC compilers. Version 3
incorporates 'TABLE' and 'OVERLAY', and allows additional forms of Real
numbers in line with the British Standard. Coiiq}iler error reporting has
been .modified slightly - in particular all error messages now have
identifying numbers and are listed in appendices to the operating
manuals.

Micro Focus has now assumed direct responsibility for production of all
RCC CORAL manuals and believes that this will offer users a better
service than has been possible in the past.

iv

AUDIENCE

This manual is intended as a description of CORAL 66 for reference and
assumes familiarity with use of the language.

MANUAL ORGANIZATION

The manual contains the following Chapters and Appendices: .

"Chapter 1. Introduction", which introduces the language and describes
its structure and design.

"Chapter 2. Scoping", which describes the naming of variables, and the
scope of names used.

"Chapter 3. Data Referencing", which describes the manner in which data
can be referenced and the grouping of data.

"Chapter 4. Place Referencing", which describes the use of labels and
switches in a program.

"Chapter 5. Expressions", which describes the types of expression
available.

"Chapter 6. Statements", which describes the types of statement
available.

"Chapter 7. Procedures", which describes the use of procedures.

"Chapter 8. Communicators", which describes the manner in which
communication between programs can be specified.

"Chapter 9. Names and Constants", which describes the specification of
names and constant values.

"Chapters 10. Text in a Program", which describes the documentation of
a program, macro processing and source text inclusion facilities.

"Appendix A. Syntax Rules", which has a cross reference to the main
text for each syntax rule.

"Appendix B. Procedure Parameters", which is a summary of . the
correspondence between formal and actual parameters..

"Ajppendix C. Language Symbols", which lists the symbols available.

"Appendix D. Character Set", which lists available characters.

"Appendix E. CORAL 66 Constraints", which duplicates information on
constraints in CORAL 66 described in the CORAL 66 Operating Guide.

"Appendix F. Implementation Specific Features", which summarises those
features of this implementation of CORAL 66 that are not specified in
BS 5905.

RELATION TO THE BRITISH STANDARD SPECIFICATION

Users may wish to compare this implementation with standard CORAL 66 as
specified in British Standard BS 5905.

The structure of this manual follows the structure of BS 5905 and
includes material from BS 5905. Features additional to the standard are
indicated by grey shading. Where the standard is less specific than
this description of CORAL, or where one of a number of alternatives has
been chosen from the standard, there is a single vertical line in the
left hand margin.

A summary of Implementation specific features is given in Appendix G.

vi

NOTATION IN THIS MANUAL

Throughout this manual the following notation is used to describe the
format of data input or output:

1. All words printed in small letters are generic terms representing
names which will be devised by the programmer.

2. When material is enclosed in square brackets [], it is an
indication that the material is an option which may be included or
omitted as required.

3. The first reference to a new term in text is underlined for
eiiq)hasis. The term is then used without redefinition in the
remainder of the manual. These first references are included in
the Index to the manual.

Headings are presented in this manual in the following order of
importance:

CHAPTER n)
Chapter Heading

TITLE

ORDER ONE HEADING

ORDER TWO HEADING

Order Three Heading
Order Four Heading

Text 3 lines down

Order Five Heading: Text on same line

Numbers one (1) to nine (9) are written in text as letters
e.g. one.

Numbers ten (10) upwards are written in text as numbers e.g.
12.

See RELATION TO THE BRITISH STANDARD SPECIFICATION in this Preface for
the use of left hand margin bars and grey shading in this manual.

RELATED PUBLICATIONS

For details of operation of the CORAL 66 software refer to the
appropriate version document:

RCC80 or RCC86 CORAL 66 Operating Guide for use with your Operating
System . •

For details of Operating System, Messages, and File Structures refer to
the appropriate Operating System User manuals.

vii

r*-

\

viii

TABLE OF CONTENTS

CHAPTER 1

INTRODUCTION

CORAL 66 1.1
CORAL 66 AND MICROPROCESSORS 1-1
THE CORAL 66 PROGRAM 1-2

NOTATION FOR LANGUAGE SYMBOLS 1-2

Using Single Quotes 1-2
Using Upper and Lower Case 1-2

LAYOUT CHARACTERS 1-3
^ SYNTACTIC METALANGUAGE 1-4

CHAPTER 2

SCOPING

BLOCK STRUCTURE 2-1
CLASHING OF NAMES 2-1
GLOBALS 2—2
LABELS 2-2
RESTRICTIONS CONNECTED WITH SCOPING 2-2

CHAPTER 3

DATA REFERENCING

NUMERIC TYPES 3-1
SIMPLE REFERENCES 3-1
ARRAY REFERENCES 3-1
PACKED-DATA 3-2

PRELIMINARY 3-2
TABLE DECLARATION 3-3
TABLE ELEMENT DECLARATION 3-3

General 3-4

Whole Number Table-Elements 3-4
Part-Word Table-Elements 3-4

COMPLETE TABLE DECLARATION 3-5
REFERENCES TO TABLES AND TABLE-ELEMENTS 3-5

STORAGE ALLOCATION 3-6
PRESETTING 3-7

ix

GENERAL 3.7
PRESETTING OF SIMPLE REFERENCES AND ARRAYS 3-7
PRESETTING OF TABLES 3-8

PRESERVATION OF VALUES 3-9
OVERLAY DECLARATIONS 3-10

CHAPTER 4

PLACE REFERENCING

CHAPTER 5

EXPRESSIONS

SIMPLE EXPRESSIONS 5-1
PRIMARIES 5«1

GENERAL 5.I
UNTYPED PRIMARIES 5-2
TYPED PRIMARIES 5-2
REFERENCES 5.2
PART-PRIMARIES 5-3
LOCATIONS 5.3
EXPLICIT TYPE CHANGING 5-4
FUNCTIONS 5^
INTEGERS 5»4

WORD-LOGIC 5-4
EVALUATION OF EXPRESSIONS 5-5
CONDITIONAL EXPRESSIONS 5-6

GENERAL 5.5
CONDITIONS 5-6

CHAPTER 6

STATEMENTS

ASSIGNMENTS g.l
GOTO STATEMENTS 6-2
PROCEDURE STATEMENTS 6-2
ANSWER STATEMENTS 6-3
CODE STATEMENTS 6-3
COMPOUND STATEMENTS 6-4
BLOCKS 6-4
DUMMY STATEMENTS 6-4
CONDITIONAL STATEMENTS 6-4
FOR STATEMENTS 6-5

GENERAL 6-5
FOR-ELEMENTS WITH 'STEP' 6-6
FOR-ELEMENTS WITH 'WHILE' '

RETURN STATEMENTS 6-6

CHAPTER 7

PROCEDURES

ANSWER SPECIFICATION 7-1
PROCEDURE HEADING 7-2
PARAMETER SPECIFICATION 7-2

GENERAL 7-2
VALUE PARAMETERS 7-3
DATA REFERENCE PARAMETERS 7-3
LOCATION PARAMETERS 7-3
ARRAY PARAMETERS 7-4
TABLE PARAMETERS 7-4
PLACE PARAMETERS; LABEL PARAMETERS 7-4
PLACE PARAMETERS: SWITCH PARAMETERS 7-4
PROCEDURE PARAMETERS 7-4
NON-STANDARD PARAMETER SPECIFICATION 7-5

THE PROCEDURE BODY 7-6

CHAPTER 8

COMMUNICATIONS

'COMMON' COMMUNICATORS 8-1
'LIBRARY' COMMUNICATORS 8-1
'EXTERNAL' COMMUNICATORS 8-2
'ABSOLUTE' COMMUNICATORS 8-2

CHAPTER 9

NAMES AND CONSTANTS

^ IDENTIFIERS 9-1
NUMBERS 9-1
LITERAL CONSTANTS 9-3
STRINGS 9-3

CHAPTER 10

TEXT IN A PROGRAM

COMMENT 10-1

COMMENT SENTENCES 10-1
BRACKETED COMMENT 10-1
'END' COMMENT 10-1

xi

MACRO FACILITY 10-2

STRING REPLACEMENT 10-2

?kMMETERS OF MACROS 10-2

NESTING OF MACROS 10-3
DELETION AND REDEFINITION OF MACROS 10-3

SYNTAX OF COMMENT AND MACROS 10-4

'LIBRARY' CALLS 10-5

APPENDIX A

SYNTAX RULES

APPENDIX 6

PROCEDURE PARAMETERS

APPENDIX C

LANGUAGE SYMBOLS

APPENDIX D

CHARACTER SET

APPENDIX E

CORAL 66 CONSTRAINTS

^ APPENDIX F

SUMMARY OF IMPLEMENTATION

SPECIFIC FEATURES

xii

ILLUSTRATIONS

Figure Title Page

I-I Program Unit Syntax 1-3
2-1 Block Syntax 2-1

3-1 Number Declaration Syntax 3-1
3-2 . Array Declaration Syntax 3-2
3-3 Table Declaration Syntax 3-3
3-4 Element Declaration Syntax 3-3
3-5 Whole Numbertype Table Element 3-4
3-6 Syntax for Partword Type In

Element Declaration 3-5
3-7 Syntax for Preset Asslgninpnt 3-7
3-8 Table Element Presetting Syntax 3-8
3-9 Overlay Declaration Syntax 3-10
4-1 Switch Syntax 4-1
5-1 General Expression Syntax 5-1
5-2 Simple Expression Syntax 5-1
5-3 Priory Operand Syntax ' 5-2
5-4 Untyped Primary Sjnatax 5-2
5-5 Typed Primary S3rntax 5-2
5-6 Reference Syntax 5-3
5-7 Part Primary Syntax 5-3
5-8 Word Logic Syntax 5-5
5-9 Conditional Expression Syntax 5-6

5-10 Condition Syntax 5-7
6-1 General Statement Syntax 6-1
6-2 Assignment Statement Syntax 6-2
6-3 GO TO Statement S3mtax 6-2
6-4 Procedure Call Syntax 6-3
6-5 Answer Statement Syntax 6-3
6-6 Code Statement Syntax 6-3
6-7 Compound Statement Syntax 6-4
6-8 Dummy Statement Syntax 6-4
6-9 Conditional Statement Syntax 6-4
6-10 For-Element Syntax 6-5
6-11 Return Statement Syntax 6-6
7-1 Procedure Declaration Syntax 7-1
7-2 Answer Specification Syntax 7-1
7-3 Procedure Heading Syntax 7-2
7-4 Parameter Specification Syntax 7-2

7-5 Table Parameter Syntax 7-4
7-6 Procedure Specification Syntax 7-5
8-1 *COMMON' Communicator Syntax 8-1
8-2 'EXTERNAL' Communicator Syntax 8-2

8-3 'ABSOLUTE' Communicator Syntax 8-2
9-1 Identifier Syntax 9-1
9-2 Number Syntax 9-2
9-3 String Syntax 9-4

10-1 Comment and Macro Syntax 10-4

TABLES

Table v Title Eaffp

7-1 Parameters of Procedures 7-3

xiii

n

XIV

CHAPTER 1

INTRODUCTION

CORAL 66

Coral 66 is a general purpose prpgramming language based on Algol 60.
Originally designed by the Royal Radar Establishment, Malvern In 1966 It was
formally defined In "Official Definition of Coral 66" published by HMSO and
more recently In a British Standard, BS 5905, herein referred to as "The
British Standard".

The language Is Intended for use In basic software, such as compilers and
operating systems, and for real time applications of small computers where
typically execution time and storage overheads are critical and Input/output
requires specialized code.

CORAL 66 AND MICROPROCESSORS

There are some aspects of microprocessor architecture that were not
envisaged when CORAL 66 was designed. Some conq)romlses have been made In
balancing a desire to provide a full and standard Implementation against the
need to exploit the microprocessor efficiently.

Some particular features of this kind are:-

1. CORAL assumes that data of type INTEGER can be used to contain machine
addresses whereas the addressing range of a processor such as the 8086
exceeds the capacity of Its natural Integers.

2. CORAL defines that consecutive INTEGER variables occupy storage
addresses differing by one, which Is not true of most modern
byte-addressed processors.

3. CORAL preset data must be statically Initialized. When programs are to
be stored, in read-only memory such data must be stored with the
instructions, and it will not be possible to change the value of preset
data during the course of the program.

4. CORAL does not define a byte- or character data type for efficient
storage of small Integers and graphic characters.

1-1

THE CORAL 66 PROGRAM

A distinction Is made between symbols and characters. Characters, standing
only for themselves, may be used In strings or as literal constants. Apart
from such occurrences, a program shall be regarded as a sequence of symbols,
each visibly representable by a unique character or combination of
characters. The symbols of the language are defined In the British Standard
but the Characters are not.

NOTATION FOR LANGUAGE SYMBOLS

Tvo notations are used to write CORAL 66 text. One notation uses single
quotes to delimit words which are to be treated as single symbols, while the
other uses upper and lower case Instead of quotes.

Using Single Quotes

In this notation:-

* Words surrounded by single quotes are treated as single
symbols —note, that each such symbol must have Its own pair of
quotation marks even when adjacent to others.

* Lower case letters may be mixed with upper case In such symbols
and In Identifiers. If so used a lower case letter Is treated as
equal to the corresponding upper case letter so that the
identifiers

eXAmple
Example

are not distinct names.

* Layout characters may be embedded in identifiers and in language
symbols e.g.

•BEGIN'
• GO TO'

Using Upper and Lower Case

In this notation:-

* Words in upper case are treated as single symbols. When adjacent
to each other such symbols at least one layout character must
separate thaa.

* Identifiers must use only lower case - any change of case will
terminate the current item.

1 - 2

Layout characters may be embedded in identifiers but
language symbols - for example it is essential to write

GOTO

not in

rather than

GO TO

The language symbol, END, must be enclosed in single quotes where
it occurs to indicate the end of a CODE statement.

LAYOUT CHARACTERS

Except where they are used in strings and 'CODE' statements, layout
characters, that is space, horizontal tab, carriage return, page feed, line
feed and rubout, are ignored by the compilers.

A program is made up of symbols (e.g. 'BEGIN',»,4) and arbitrary
identifiers, which, by declaration, specification or setting, acquire the
statiis of single symbols. Identifiers are names referring to objects, which
are classified as follows:

(a) data (numbers, arrays of numbers, tables)
(b) places (labels and switches)
(c) procedures (functions and processes)

A program may be compiled in more than one unit. To make it possible to
refer to chosen objects in more than one unit the names and types of such
objects are written outside the body of each unit in communicators. A
CORAL 66 program unit comprises the syntax shown in Figure 1-1.

'CORAL' name of program or unit
Optional communicators
'BEGIN'

Body of program unit
'END'
'FINISH'

Figure 1-1. Program Unit Syntax.

The body of the program unit with its enclosing 'BEGIN' and 'END' form a
block.

When a program is compiled one of its units, designated as the master
segment, is identified as the entry point of the program and the program
starts running from the beginning of its outermost block. A complete
CORAL 66 program is supplied in your CORAL 66 Operating Guide.

1 - 3

SYNTACTIC METALANGUAGE

The syntactic metalanguage used to describe CORAL syntax consists of rules,
where each rule has on its left-hand side a class name, such as 'Statement*.
Such names appear in lower case without spaces and with an initial capital
letter. On the right-hand side of a rule are the various alternative
expansions for the class name. These alternatives are each printed on a new
line. Where a single alternative spreads over more than one line of print,
the additional lines are inset in relation to the starting position of the
alternative. Each alternative expansion consists of a sequence of items
separated by spaces. The items themselves are either further class names or
terminal symbols, such as 'BEGIN*. The class name 'Void' is used for an
empty class. For example, a typical pair of rules might be

Specimen = 'ALPHA' Sign
'BETA' Sign

Sign = +

Void

Examples of Specimen complying with these rules are 'ALPHA'+ and 'BETA*.

A complete summary of syntax rules is available for reference in Appendix A
of this manual.

1 - 4

CHAPTER 2

SCOPING

A named object may be brought into existence for part of a program and may
have no existence elsewhere (but see PRESERVATION OF VALUES in Chapter 3).

The part of the program in which it is declared to exist is known as its
sco£e. One effect of scoping is to increase the freedom of choosing names
for objects whose scopes do not overlap. Another effect is economy of
computer storage space. The scope of an object is determined by the block
structure of the program.

BLOCK STRUCTURE

A block is a statement consisting, internally, of one or more declarations
followed by one or more statements punctuated by semicolons and all
bracketed by 'BEGIN' and 'END'.

The syntax is as shown in Figure 2-1.

Block s 'BEGIN' Declist; Statementlist 'END'
Declist s Dec

Dec; Declist
Dec ss Datadec

Overlaydec
Switchdec

Proceduredec
Datadec s Numberdec

Arraydec
Tabledec

Figure 2-1. Block Syntax.

The declarations have the purpose of fully classifying new objects and
providing them with names identifiers). As a statement can itself be a
block, merely by having the right form, blocks can be nested to an arbitrary
depth. Except for global objects (see GLOBALS), the scope of an object shall
be the block in which it is declared and within this block the object is
said to be local. The scope penetrates inner blocks, where the object is
said to be non-local.

CLASHING OF NAMES

Two objects that hare the same name cannot have identical scopes. If two
objects have the same name and their scopes overlap, the clash of
definitions could give rise to ambiguity. Typically^ a clash occurs when an
inner block is opened and a local object is declared to have the same name
as a non-local object that already exists. In this situation, the non-local
object continues to exist throu^ the inner block (i.e., a variable
maintains its value) but becomes temporarily inaccessible. The local meaning
of the identifier always takes precedence.

2 - 1

GLOBALS

A program unit may refer to global objects. Such objects may be used in any
unit of the program as their scope is the entire program. To become global
an object is named in a communicator written before the body of the program
unit. For some types of object, such as 'COMMON' data references, this takes
the form of a declaration, and is the only declaration required. Other types
of object, specifically 'COMMON' labels, 'COMMON' switches and 'COMMON'
procedures, must be fully defined within the outermost block of a program
unit. This means that 'COMMON' labels must be set, and 'COMMON' switches and
procedures must be declared, in one of the outermost blocks of the program.
Such objects are merely specified in a 'COMMON' or 'EXTERNAL' communicator
(see 'COMMON' COMMUNICATORS in Chapter 8) and are treated as local in every
outermost block of the program. Global objects declared in communicators are
treated as non-local. All globals are non-local in all the inner blocks of
any program unit. With these requirements for locality, questions of
clashing are resolved as described under CLASHING OF NAMES earlier in this
chapter.

LABELS

Any statement may be labelled by writing in front of it an identifier and a
colon. The scope of a label is the smallest block embracing the statement
that is labelled. Thus labels can be used before they have been set. It also
follows that the only means of entering a block is through its 'BEGIN'. It
is possible to jump into an outermost block from a different program unit by
the use of a 'COMMON' label, 'COMMON' switch or 'COMMON' procedure.

NOTE; Labels alone do not convert a compound statement into a block.
For a 'BEGIN', 'END' pair to constitute a block they must be the
outermost such pair in a program unit or there must be one or
more declarations following 'BEGIN'. It is thus possible, though
undesirable, to jump into a compound statement.

RESTRICTIONS CONNECTED WITH SCOPING

No identifier other than a label must be used before it has been declared or
specified. Specifications means that the type of object to which an
identifier refers has been declared, but not necessarily the full definition
of the object (see COMMON COMMUNICATORS in Chapter 8). Typically a
procedure identifier is specified as referring to a certain type of
procedure with certain types of parameters by the heading of the procedure
declaration, but the procedure is not fully defined until the end of the
declaration as a whole.

Xa ^ .lapl«iieiitatioa\'all Identifiers' local to the saBe'̂ bloW iaay 1»e
consi^er^^ to be dec^red' siottlt^eously. As an eaTample pf tHis, assuine
iihat two^ procedures* F and G'axe declared In succession' in a p^tlcalar
block, then each my call the other \jr Itself>^and each' iaay Wfer to
identifers that are local to the same block i^at^er their order of
declaration.. : ' . ^ '

2-2

•A

CHAPTER 3

DATA REFERENCING

NUMERIC TYPES

There are three numeric types:

1. Floating point
2. Integer
3. Byte

Except in certain part-word table elements (see Part Word Table
Elements), all three types shall be signed. Numeric type shall be
indicated by the terminal symbols: 'FLOATING*, 'INTEGER* or *BYTE*.

The numeric type *BYTE* occupies one memory byte i.e. 8 bits; the
numeric type 'INTEGER' occupies two bytes (16 bits); the 'FLOATING' size
and format depends on the compiler and options used. 'FLOATING' is not
accepted if 'FLOATING' is excluded from the compiler when generated or
by coii5)ile time option.

SIMPLE REFERENCES

The simple objects of data are single numbers of 'FLOATING' 'INTEGER' or
'BYTE' types. Simple references shall refer to such objects e.g.

'INTEGER' I,J,K;
'BYTE' X,Y;

The declarations may include assignment of initial values; this is known
as presetting.

Requirements for presetting are specified later in this chapter. The
syntax for a number declaration is shown in Figure 3-1.

Numberdec = Unsetnumberdec Presetlist

Unsetnumberdec • Numbertype Idlist
Idlist = Id, Idlist

Figure 3-1. Number Declaration Syntax.

ARRAY REFERENCES

An array is restricted • to a one-dimensional or two-dimensional set of
numbers that are all of the same type. An array is represented by a
suitably declared identifier with, for each dimension, a lower and upper
index bound in the form of a pair of integer constants, e.g.

'INTEGER' 'ARRAY' B[0:10];
'FLOATING' 'ARRAY' C[l:3,l:3];

The lower bound cannot exceed the corresponding upper bound. If more
than one array is required with the same numeric type and the same

3-1

dimensions and bounds, a list of array identifiers separated by commas
may replace the single identifiers shown in the above examples* Arrays
with the same numeric type but different bounds or dimensions may also
occur in a composite declaration e.g.:

'INTEGER' 'ARRAY' P,Q,R[1:3],S[1:4],T,U[1:2,1;3];

An array identifier refers to an array in its entirety, but its use in
statements is confined to the communication of the array reference to a
procedure. Elsewhere, an array identifier must be indexed so that it
refers to a single array element. Indices have the form of arithmetic
expressions, separated by commas, enclosed in scjuare brackets after the
array identifier. Each index is then evaluated to an integer as
specified in EVALUATION OF EXPRESSIONS in Chapter 5. The indices of a
two-dimensional array are evaluated in the order of occurrence when
reading the text from left to right. The syntax rules for an array
declaration that includes a presetting facility (see PRESETTING OF
SIMPLE REFERENCES AND ARRAYS later in this Chapter) are shown in
Figure 3-2.

Arraydec s Unsetarraydec Presetlist

Unsetarraydec = Numbertype 'ARRAY' Arraylist
Arraylist s Arrayitem

Arrayitem, Arrayitem
Arrayit em s Idlist [Sizelist]

Sizelist SB Dimension

Dimension, Dimension
Dimension S Lowerbound:Upperbound
Lowerbound S Signedinteger
Upperbound S3 Signedinteger

Figure 3-2. Array Declaration Syntax

PACKED DATA

PRELIMINARY

There are two methods of referring to packed data; one in which an
unnamed field is selected from any computer byte or adjacent pair of
bytes (see PART PRIMARIES in Chapter 5) and the other, in which the data
format is declared in advance. In the latter method the format is
replicated to form a table. A group of several bytes (n) may be
partitioned into bit fields (where no field may extend into more than
two bytes), and the same partitioning shall be applied to as many such
groups (m) as are required. The total data space in bytes for a table is
then the multiple of bytes in a group by number of groups (nm). Each
group sh&ll be known as a table-entry. The fields must be named, so that
a combination of field identifier and entry index selects data from one
or more computer bytes, known as a table—entry. The elements in an
entry may occupy overlapping fields and may leave unfilled spaces in the
entry.

3-2

TABLE DECLARATION

A table declaration serves two purposes:

1. To provide the table with an identifier, and to associate this
identifier with an allocation of storage sufficient for the width
and number of entries specified, e.g.

'TABLE' APRIL [8,30]

is the beginning of a declaration for the table APRIL with 30
entries each eight bytes wide, requiring an allocation of 180 bytes
in all.

2. To specify the structure of an entry by declaring the elements
contained within it, as specified in TABLE-ELEMENT DECLARATION in
this Chapter. Data-packing in this implementation involves no
'slack* bytes, each entry occupies the declared number of bytes and
the next entry follows immediately.

The general syntax for a table declaration is given in Figure 3-3.

Tabledec « 'TABLE' Id Tableform Presetlist
'TABLE' Id [Width,Length][Elementdeclist Elementpresetlist]

Tableform = [Width,Length][Elementdeclist]
Elementdeclist

= Elementdec

Elementdec; Elementdeclist
Width « Integer
Length = Integer

Figure 3-3. Table Declaration Syntax.

NOTE: Requirements for the two presetting mechanisms are specified in
PRESETTING OF TABLES later in this Chapter.

TABLE-ELEMENT DECLARATION

General

A table-element declaration associates an element name with a numeric
type and with a particular field of each and every entry in the table.
The field must be a whole 'BYTE' 'INTEGER' or 'FLOATING' number or a
part of one or two computer .bytes and the form of declaration differs
accordingly. The syntax for an element declaration is given in
Figure 3-4.

Elementdec

Byteposition
Bitseparator

Bitposition

Id Numbertype Byteposition
Id Partwordtype Byteposition Bitseparator Bitposition
Signedinteger
'BIT'

Integer

Figure 3-4. Element Declaration Syntax,
3-3

Bltposltlon must be numbered from zero upwards, and the least
significant bit of a word is designated bit-position zero. Normally,
table-elements should be located so that they fall within the declared
width of the table but compilers do not check the limits. To improve
program legibility the language word *BIT* is provided as an alternative
to the comma. The meaning of Bltposltion is specified in
Part-Word Table Elements later in this Chapter.

Whole Numbertype Table-Elements

As specified above the form of declaration for whole 'BYTE*, 'INTEGER*
or 'FLOATING' table-elements is shown in Figure 3-5.

Id Numbertype Byteposition

Figure 3-5, Whole Numbertype Table Element Syntax

EXAMPLES:

For example:

TICKETS 'INTEGER' 0

declares a 'pseudo-array' of elements named TICKETS. (True array
elements are located consecutively in store - see
STORAGE ALLOCATION.) Each element shall refer to a (signed) integer
at byte-position zero In an entry. Similarly, the example:

WEIGHT 'FLOATING' 2

locates WEIGHT frcnn byte position 2 onwards.

Part-Word Table-Elements

Elements that occupy fields that are not whole 'INTEGER', 'FLOATING' or
'BYTE' numbers, aligned on computer bytes, must be declared as follows:

RAIN 'UNSIGNED' (4) 6,0
HUMIDITY 'UNSIGNED' (6) 7,0;
TEMPERATURE (10) 7,6;

for part-word Integer elements. The number of bits required for the
field are given in brackets followed by the byte- and bit-position of
the field within the entry. Byte-position is the byte in which the least
significant (and lowest addressed) bit of the field is located, and
hit-position is the position of the least significant bit in the
specified byte.

The word 'UNSIGNED' increases the capacity of the field for positive
numbers at the expense of eliminating negative numbers. For example,
RAIN 'UNSIGNED' (4) above, allows numbers from zero to 15, while

TEMPERATURE (10) allows from -2^ to (2^-1).

3-4

The syntax of partwordtype, for substitution in the syntax in Figure 3-4
is shown in Figure 3-6,

Partwordtype Elementscale

'UNSIGNED' Elementscale
Elementscale = (Totalbits),

Figure 3-6. Syntax for Partwordtjrpe ii;i Elenjent Declaration.

Part-word integer elements may be up to 15 bits long if 'UNSIGNED* or 16
bits if signed, but their starting bit-position and length must be such
that they do not extend into more than two computer bytes.

COMPLETE TABLE DECLARATION

The complete table declaration built up so far as an illustrative
example might be:

'TABLE* APRIL [6,30]
[TICKETS *INTEGER* 0;
WEIGHT 'FLOATING' 2;
RAIN 'UNSIGNED' (4) 6,0;
SUNSHINE 'UNSIGNED' (4) 6,4;
HUMIDITY 'UNSIGNED' (6) 7,0;
TEMPERATURE (10) 7,6]

All the numbers used to describe and locate fields must be constants.

REFERENCES TO TABLES AND TABLE-ELEMENTS

A table-element . is selected by indexing its field identifier. To
continue with the example used above, the rain for 6 April would be
written RAIN [5]. (An entry shall always have the conventional lower
bound of zero). In use, the names of table-elements are always indexed,
although a table identifier such as APRIL can stand on its own when a
table reference is passed to a procedure. The use of an index with a
table identifier shall select a byte from the table regarded as a
conventional array of 'BYTE' data with lower index bound zero. Thus the
implied bounds of APRIL are 0:179. A table name is normally indexed only
for the purpose of running through the table systematically, for example
to set all data to zero, or to form a base for overlaying.

3-5

STORAGE ALLOCATION

Computer storage space for data Is allocated automatically at compile
time. One or more bytes (according to the number type) are allocated for
each simple reference and for each array element, and as many bytes are
allocated as are declared for each table-entry. In any one composite
declaration, the compiler performs allocation serially.

EXAMPLE:

'BYTE' A,B,C;
'INTEGER' P,Q;

The locations of A, B and C become n, n+1 and n+2 respectively, and
those of P and Q become m and m+1, m+2 and m+3 respectively, where
m and n are undefined and unrelated.

An 'INTEGER' number has its leas significant byte at the lower address.

In two-dimensional arrays, the second index is stepped first; the
declaration

'ARRAY* A[1:2],B[1:2,1;2]
locates the elements

A[1],A[2],B[1,1],B[1.2],B[2.1],B[2,2]
in consecutive ascending locations.

3-6

r^

PRESETTING

GENERAL

Some objects of data may be initalized when the program is loaded into
store by the inclusion of a presetting clause in the data declaration.
Presetting is not dynamic, and preset values that are altered by program
are not restored unless the program is reloaded. If preset data and
program instructions are ultimately stored in read-only memory it is not
possible for values to be altered by program (although the compiler does
not check this) and presetting should in such cases be reserved for
constant data.

An^objact shall not be £or pres^ttixi^ It is -defined in
'/OVERLAY* . decXaratloa. Objects ^defiu^ /iii' tTse body o£ a ^RSCCRSIVE'
'.procedure Imy be j^resetj^ ;iwte/liwever -th&t -object's are ^'not
;:^5feplicat€d .far eacti,activation of the procedure a»4 M value of .such
'--axi object.is altered. It Td.li appear, altered to .^l aet4.vatlons, o£^tbe
/procedure* ^ v :^ ^ "/ t ^

^is. ' if'i-K'' -y ^ '

PRESETTING OF SIMPLE REFERENCES AND ARRAYS

The preset constants must be listed at the end of the declaration after
an assignment symbol, and are allocated in the order already specified
e.g.,

'INTEGER' A,B,C;'=1,2,3;
'INTEGER' 'ARRAY' K[l:2,l:2];»11,12,21,22;

If desired for legibility, round brackets may be used to group items of
the presetlist, but such brackets are ignored by the coii5)iler except for
checking that they occur as matched pairs. The number of constants in
the presetlist .must not exceed, but may be less than, the number of
references or array elements declared, and presetting ceases when the
presetlist is exhausted. The preset assignment symbol may optionally be
the only part of the presetlist present. The general syntax is given in
Figure 3-7.

Presetlist s Assignmentsymbol Constantlist
Assignmentsymbol s

•

Constantlist s Group,
Group, Constantlist

Group s Constant

(Constantlist)
Void

Figure 3-7 General Syntax for Preset Assignment.

NOTE. The main purpose of the final void may be seen by reference to
table presetting that follows. For the expansion of constants see
NUMBERS in Chapter 9.

3-7

PRESETTING OF TABLES

Two alternative mechanisms are available for presetting tables.

1. Either the Internal structure of a table Is completely disregarded
and the table treated as an ordinary one-dimenslonal array of
*BYTE' data, and preset as such.

or,

2. All the table-elements are preset after their declaration list, as
shown at Elementpresetllst In the syntax specified In Figure 3-1
e.g.,

'TABLE' GEARS [3,3]
[TEETHl 'UNSIGNED*(6) 0,0;
TEETHl 'UNSIGNED'(6) 0,6;
RATIO' UNSIGNED'(11) 0,12;
ARC 'UNSIGNED'(5) 0,12
'PRESET' (57,19,3,),(50,25,2),(45,5,9,)]

For table-element presetting the word 'PRESET' shall be used Instead of
the assignment symbol specified In Figure 3-7. Each entry of the table
must be preset In succession as a group of elements, taken In the order
of their declaration. Voids In the list Imply absence of any
assignment; this may be necessary to avoid duplication when fields
overlap, as do RATIO and ARC In the foregoing example. As specified In
Figure 3-7 brackets used for grouping constants In the list of presets
are Ignored by the compiler. The general syntax Is given In Figure 3-8.

Elementpresetllst «= 'PRESET' Constantllst
Void

Figure 3-8 Table Element Presetting Syntax.

The previous example could, with equal effect but less convenience, be
expressed In the form:

'TABLE' GEARS [3,3]
[TEETHl 'UNSIGNED'(6) 0,0;
TEETHl 'UNSIGNED'(6) 0,6;
RATIO' UNSIGNED'(11) 0,12;
ARC 'UNSIGNED'(5) 0,12]

: =• 'HEX'(F9),'HEX'(34),0,
'HEX*(72),'HEX'(26),0,
'HEX'(6D),'HEX'(91),0

3-8

PRESERVATION OF VALUES

Objects of data that have not been preset are not required to have
existence outside the scope of their declarations.

The values to which local Identifiers refer are In general assumed to be
undefined when a block Is first entered and whenever It Is subsequently
re-entered.

NOTE: This Is consistent with the fact that a block structured language
Is designed for automatic overlaying of data. Local working space
may therefore have been used for other purposes between one entry
to a block and the next.

When a data declaration contains a presetllst as permitted by the
Presetting requirements, the values of all the objects named In that
declaration remain undisturbed between successive entries to the block

or procedure body, like 'own' variables In ALGOL 60. Appearance of a
preset assignment symbol, or In tables the word 'PRESET', suffice even
though the list of preset constants Is void.

3-9

OVERLAY DECLARATIONS

Overlaying may be found desirable to enable global data space to be
retised whilst not required for its primary purpose, or to allow
apparently different data references to refer simultaneously to the same
objects of data, i.e., as alternative names and definitions of the same
storage locations.

NOTE: Indiscriminate use of overlaying should be avoided as it can lead
to confusion and obscurity.

To form an overlay declaration, an ordinary declaration must be preceded
by a phrase of the form

'OVERLAY* Base 'WITH'

where Base is a data reference that has previously been covered by a
declaration in the same 'COMMON' communicator or in the same program
unit. The base shall be a simple reference, a one-dimensional array
reference or a table reference treated as a one-dimensional array of
'BYTE' data. If the array or table identifier is not indexed, it must
refer to the location of its zero element (which may be conceptual).
Storage all,ocated by the overlay declaration shall start from the base,
shall proceed serially (as already specified) and shall not be overlaid
by succeeding declarations unless these are themselves overlay
declarations. There is no requirement to re-order storage that is
already allocated. The syntax of an overlay declaration is shown in
Figure 3-9.

Overlaydec • 'OVERLAY' Base 'WITH' Unsetdatadec
Base " Id

Id[Signedinteger]

Figure 3-9. Overlay Declaration Syntax.

Note that presetting is not allowed. If the storage overlaid contains
preset objects then those preset values determine the initial values of
the overlaying objects; otherwise the storage is variable (and
re-usable) and no initial values can be assumed.

3-10

CHAPTER 4

PLACE REFERENCING

Place references refer to positions of program statements and the simplest
marker is the label. A switch is a preset and unalterable array of labels
with lower index bound one. These labels must be within scope at the switch
declaration. Any use of the indexed switch name must refer to the
corresponding label. For example the switch declaration

'SWITCH' S:» A,B,C

causes S[l] to refer to the label A, S(2] to B and S[3] to C.

The general sjmtax is shown in Figure 4-1.

Switchdec = 'SWITCH' Switch Assignmentsymbol Labellist
Labellist = Label

Label, Labellist
Switch = Id

Label » Id

Figure 4-1. Switch Syntax.

4 - 1

CHAPTER 5

EXPRESSIONS

The term 'expression* is reserved for arithmetic expressions. CORAL 66 has
no designational expressions of ALGOL 60 type. As there are no Boolean
variables and no.bracketed Boolean expressions (see CONDITIONAL EXPRESSIONS
later) the expressions after *IF' are termed conditions. The general sjmtax
for an. expression is shown in Figure 5-1.

Expression » Unconditionalexpression
Conditionalexpression

Unconditional expression » Simpleexpression
String

Figure 5-1 General Expression Syntax.

NOTE: Requirements for strings are specified in Chapter 9.

SIMPLE EXPRESSIONS

Arithmetic is performed with the monadic and dyadic adding
operators + and -, and with the dyadic multiplying
operators * (multiply), / (divide) and 'MOD' (remainder of division). The
plus and minus operators join terms. The multiplication, division and
remainder operators join factors to form terms. There are no exponentiation
operators. The general syntax for simple expression is shown in Figure 5-2.

Simp1eexpression = Term

Addoperator Term
Simpleexpression Addoperator Term

Term ® Factor

Term Multoperator Factor
Addoperator = +

Multoperator m *

1
♦mod*

Figure 5-2. Expressions Syntax.

first operand divided by
apart .from this

restriction aXi operators'may a^ply .to'-all'naaseric types*

PRIMARIES

GENERAL

Primaries are the basic operands in expressions, e.g. in the analysis of the
expression

X + Y*(A + B)-4

there are three terms, the primary X, the term Y*(A+B) and the primary
5 - 1

4. The middle term is the product of two factors the primary Y and the
primary (A+B). To complete the analysis, all expressions from within
brackets are similarly analysed until no further reduction is possible and
no expression brackets remain. When an expression contains no word—logical
operators a factor shall be a primary, whether or not of a defined type. The
syntax for a Primary operand is shown in Figure 5-3.

Factor Primary
Booleanword

Primary « , Untypedprimary
Typedprlmary

Figure 5

UNTYPED PRIMARIES

Untyped primaries are those operands that cannot be classed as integer,
floating-point or byte without reference to their context, e.g. the number
3.1416 may be represented with varying degree of accuracy in each of the
number types. The same applies to an expression, whose type is determined by
context. The syntax is:

Untyped primary B Real

(Expression)

Figure 5-4. Untyped Primary Syntax.

A *real* (see NUMBERS in Chapter 9) is an unsigned numerical constant
containing a decimal, octal or hexadecimal point or a tens exponent, or a
decimal point and a tens exponent.

TYPED PRIMARIES

Typed primaries are classified as follows:

Typed primary = Reference

Partprimary
'LOCATION* (Reference)
Numbertype (Expression)
Procedurecall

Integer

Figure 5-5. Typed Primary Syntax.

REFERENCES

A simple reference, or a reference to an array element or whole numbertype
table—element has a type defined in its declaration. Such references,
termed References in the formal syntax, refer to data for which a whole
number of computer bytes are set aside. A further kind of Reference, the
anonymous reference, shall take the form

[Index]
5-2

Where the index is any expression evaluated as an integer to give the actual
location of a computer byte. An anonymous reference possesses all the
properties of an identified reference, except that it lacks an identifier.
Just as a variable I, declared as 'INTEGER* I, may be used in an expression
to refer to the contents of the two computer bytes allocated to I, so the
use of an anonymous reference in an expression will refer to the contents of
addresses defined by Index and (Index + 1), Such contents will be taken to
be of numeric type 'INTEGER* , irrespective of any declaration associating
that storage with some other type. (See also LOCATIONS later.) The syntax
for a Reference is shown in Figure 5-6,

Reference

Index

Id

Id [Index]
Id [Index, Index]
[Index]
Expression

Figure 5-6. Reference Syntax.

PART-PRIMARIES

Any single item of packed data may act as a typed primary. Such an item can
be either;

1. a reference to a part-word table-element; or
2. a specified field of any typed primary.

In (1), the type is defined in the table declaration, in (2), the desired
field is selected by a prefix of the form

BITS [Totalbits, Bitposition]

in front of the typed primary to be operated upon. The result of this
operation is a positive integer value of width Totalbits and in units of the
bit at *Bitposition*. Total bits must not be set equal to the full size of
INTEGER (i.e. Totalbits must be less than 16). The syntax for a
part-primary, which should be distinguished from that of a *part-reference *
is:

Partprimary Id [Index]
BITS [Totalbits.

Figure 5-7. Part Primary Syntax.
Bitposition] Typedprlmary

LOCATIONS

The computer location of any reference is obtainable by the location
operator, which is written in the form

*LOCATION' (Reference)

and has a value of type *INTEGER*.

5-3

NOTE; If I and J refer to integers, [*LOCATION'(I)] is equivalent to I,
and 'LOCATION* ([J]) is equivalent to J. The reasoning is as
follows. 'LOCATION'(I) is the address of the 'INTEGER' I.
Enclosure in square brackets forms an entity equivalent to an
identifier standing for this address, which by hypothesis is I.
Similarly [23] is equivalent to an identifier for the address 23
and 'LOCATION'([23]) is the address for which this fictitious
identifier stands, which is 23 by hypothesis.

EXPLICIT TYPE-CHANGING ;

A typed primary may have its type changed, and an untyped primary may be
typed, by enclosure within round brackets preceded by a specific Numbertype
as specified in TYPED PRIMARIES earlier in this Chapter.

FUNCTIONS

The call of a typed procedure (see Chapter 7) may be treated as a function
and used as a primary in any expression. (For the syntax of a procedure
call, see Figure 6-4).

INTEGERS

An integer used in any expression (see Chapter 9) is assumed to have the
numeric type 'INTEGER' before any necessary type-changes enforced by
context. However a small integer, defined by the inclusive range -128 to
+255 shall be assumed to have type 'BYTE' initially.

WORD-LOGIC

Five dyadic logical operators are defined for use between primaries. Three
of these operators, concerned with operations on corresponding bits of their
operands, are defined in the British Standard. The other two, 'SRL' and
'SLL' are extensions of the standard.

The standard operators combine corresponding bits of the operands as
follows. The i th bit of the result is a given logical function of the i th
bits of the two operands, and the result as a whole is a typed primary of
numeric type 'INTEGER' except where both operands are of type 'BYTE' when
the result shall be of type 'BYTE'.

The operators are:

'DIFFER'
0 1

0 1

1 0

'UNION'

0
0 fo r

1 1

5-4

•MASK'

0 1

0

N 'DIFFER* is recognizable as 'not equivalent', 'UNION' as 'inclusive or' and
MASK as 'and'. The shift operators are 'SLL' (shift left logical) and

'SSL' (shift right logical). The result has the type of the first operand
and a value equal to the bit pattern representing the first operand shifted
in the specified direction by the number of bits specified in the second
operand. The second operand must always be evaluated to type 'BYTE' and no
defined result shall be given for negative values thereof.

The syntax, continued from the GENERAL Syntax given under PRIMARIES is:

Booleanword Booleanword 2,
Booleanword 4 'DIFFER' Booleanword 5

Booleanword 2 SB Booleanword 3,
Booleanword 5 'UNION' Booleanword 6

Booleanword 3 « Booleanword 6 'MASK' Shiftexpression
Booleanword 4 m Booleanword

Shiftexpression
Booleanword 5 m Booleanword 2

Shiftexpression
Booleanword 6 s Booleanword 3

Shiftexpression
Shiftexpression m Primary

Shiftexpression
Shiftop m 'SLL'

'SRL'

Figure 5-8. Word Logic Syntax.

EVALUATION OF EXPRESSIONS

Expressions are used in assignment statements, as value parameters of
procedures and as integer indexes, all of which contexts determine the
numeric type finally required. CORAL 66 expressions are automatically
evaluated to this type, but in the process of calculation, data may be
subjected by the compiler to various intermediate transformations.

Foe the

- V „ ^ , , ,, ,

All syntactically outermost terms in an expression are evaluated to the
required numeric type before the adding operators are applied. If an
expression is enclosed in round brackets, its terms are not 'outermost'
and this requirement no longer applies^

The expressions on either side of a Comparator (see CONDITIONS later)
will be automatically evaluated to the same type, and the type is
'FLOATING' if either expression is 'FLOATING', else 'INTEGER' if either
expression is 'INTEGER' else 'BYTE'. However 'FLOATING' will not be used
when 'floating' point is not installed in the compiler or is suppressed
by compile-time option.

5-5

The programmer may Impose any desired system of evaluation by the use of
Numbertype (Expression), which is a typed primary and any occurrence of
which behaves like a variable, e.g. REF, declared as

Numbertype REF;

and assigned a value by

REF Assignmentsymbol Expression

before it is used. For example if I and J are 'INTEGER' references and X
is a 'FLOATING' reference the assignment statement

X:-I-J

causes I and J to be converted to floating-point before subtraction,
whilst

X;-'INTEGER' (I-J)

causes subtraction of integers before conversion to floating-point.
Although the order of evaluation of an expression is unspecified, the
following requirement concerning functions shall apply. Value parameters
are necessarily evaluated before the function itself is computed, so
that, for example, the order of evaluation of SIN (COS (Expression)) is
Expression, COS, SIN. Apart from this type of revers^, functions
occuring in a simple expression are evaluated in the order in which they
appear when the expression is read from left to right, regardless of
brackets.

CONDITIONAL EXPRESSIONS

GENERAL

The general syntax for a conditional expression is:

Conditionalexpression • 'IF' Condition 'THEN' Expression
'ELSE' Expression

Figure 5-9. Conditional Expression Syntax.

The expressions following 'THEN* and 'ELSE' are known as the
consequent expression and the alternative expression respectively. The
value of a conditional expression is the value of the consequent
expression if the condition is true; it is the value of the alternative
expression if the condition is false.

The numeric type used to evaluate the condition has no effect on the
evaluation of the consequent or alternate expressions. Consequent and
alternative expressions are not prevented from being regarded as
syntactically outermost by their appearance in a conditional expression.

5-6

CONDITIONS

A condition consists of one or more arithmetic comparisons. Comparisons
are connected by the Boolean operators 'OR* and 'AND*, of which 'AND'
takes precedence. The permissible arithmetic comparators are 'less
than', 'less than or equal to',,'equal to', 'greater than or equal to',
'greater than', and 'not equal to'. The general syntax is shown in
Figure 5-10.

Condition

Subcondition

« Condition 'OR' Subcondition
Subcondition

" Subcondition 'AND' Comparison
... Comparison

Comparator = <
<»
SB

>

< >

Figure 5-10. Condition Syntax.

The Boolean operators have their usual meanings, the 'OR' being inclusive.
Conditions and subconditions are evaluated from left to right only as far as
necessary to determine truth or falsity. Comparisons are evaluated in the
order in which they appear when a condition is read from left to right.

NOTE; No overflow detection is required by the definition of CORAL 66.
Comparisons may give rise to overflow if the algebraic difference
of the values compared exceeds the range of the particular number
type even though the compared values are within the range. This
range is particularly limited for 'BYTE' quantities.

5-7

CHAPTER 6

STATEMENTS

The general syntax of a statement is shown in Figure 6-1.

Statement

Simplestat ement

Label:Statement

Simplestatement
Conditionalstatement

Assignmentstatement
Gotostatement

Procedurecall
Answe rs tatement

Codestatement
Compounds t a t emen t
Block

Dummystatement

"Forstat^iit ' ^ "T '
Retumstatement

€onditloitaIstatement2

Figure 6-1. General Statement Sjmtax.

Statements are executed in the order in which they are written, except that
a goto statement may interrupt this sequence without return, and a
conditional statement may cause certain statements to be skipped.

ASSIGNMENTS

The left-hand side of an assignment statement must always be a data
reference, and the right-hand side must be an expression for procuring a
numerical value. The result of the assignment is that the left-hand side
refers to the new value until this is changed by further assignment, or
until the value is lost because the reference goes out of scope (but see
PRESERVATION OF VALUES in Chapter 3). The expression on the right hand side
is evaluated to the numeric type of the reference, with automatic type
conversion as necessary. Functions occurring in an assignment statement are
evaluated in the order in which they are encountered when reading the text
from left to right. The left-hand side may be a reference or a part
reference i.e. a part-word table element or some selected field of a
•Reference. When assignment is made to a part reference, the remaining bits
of the computer byte or bytes shall remain unaltered. As examples of
assignment,

'INTEGER' I;
I:=4

has the effect of placing the integer 4 in the location allocated to I, and

BITS[2,6]X:=3

6-1

rs

has the effect of placing the binary digits 11 in bits 7 and 6 of the first
or only byte allocated to X. This last statement is treated in a similar
manner to an assignment that has on its left-hand side an unsigned integer
table-element. The statement

•bits' [1,15] [*LCX:ATI0N' (I)+2]:-l

has the effect of forcing the sign bit of the two bytes immediately
following I to *one*.

The general syntax of the assignment statement is shown in Figure 6-2.

Assignmentstatement » Variable Assignmentsymbol Expression
Variable = Reference

Partreference
Partreference = Id [Index]

'BITS' [Totalbits, Bitposition] Reference

Figure 6-2. Assignment Statement Syntax.

There is no form of multiple assignment statement.

GOTO STATEMENTS

The goto statement causes the next statement for execution to be the one
having a given label. The label may be written explicitly after 'GOTO' , or
referenced by means of a switch whose index lies within the range 1 to n,
where n is the number of labels specified in the switch declaration. The
syntax is as shown in Figure 6-3.

Gotostatement » 'GOTO' Destination
Destination = Label

Switch [Index]

Figure 6-3. GOTO Statement Syntax.

NOTE: No range checking of a switch index is performed so that programs
requiring such range checking must include explicit statements to
validate the index.

PROCEDURE STATEMENTS

A procedure identifier, followed in parentheses by a list of actual
parameters (if any) is known generally as a procedure call. If the procedure
possesses a value, it may be used as a primary in an expression, but whether
it possesses a value or not, a procedure call may also stand alone as a
statement. The call of the procedure causes:

1.

2.

the formal parameters in the procedure declaration to be replaced by
the actuals in a manner that depend on the formal parameter
specifications (see PARAMETER SPECIFICATION in Chapter 7); the
replacement is effected in the order in irtiich the parameters are read
when reading from left to right

the procedure body to be executed before the statement dynamically
following the procedure statement is obeyed.

6-2

The syntax for a procedure call Is shown in Figure 6-A

Procedurecall » Id

Id(Actuallist)
Actuallist « Actual

Actual.Actuallist
Actual a Expression

Reference

Destination

Name
Name > Id

Figure 6-4. Procedure Call Syntax.

NOTE: The purpose of the four types of actual parameter Is described In
PARAMETER SPECIFICATION In Chapter 7.

ANSWER STATEMENTS

An answer statement Is used only within a typed procedure body, and is the
means by which a value is given to the procedure. It causes the expression
in the answer statement to be evaluated to the numeric type of the
procedure, followed by immediate exit from the procedure body. The syntax
is:

Answerstatement = 'ANSWER' Expression

Figure 6-5. Answer Statement Syntax.

CODE STATEMENTS

Any sequence of assembler source statements enclosed by 'CODE"BEGIN' and
'END', may be used as a CORAL 66 statement. For communication between code
and other statements it is possible to use any CORAL 66 identifier of the
program within the code statement, provided that the identifier is in scope.
Such use of an identifier must be indicated by preceding it by a %. The
identifier must also be followed by a printing delimiter (such as
semicolon). The syntax for a code statement is:

Codestatement »

Codestatement ~
'CODE"BEGIN' Codesequence 'END'
assembler instructions in which % name
refers to CORAL defined name

Figure 6-6. Code Statement Syntax.

NOTE: Further requirements for code statements, examples of code
statements and details of the text substituted by the compiler
for % identifier are given in the appropriate CORAL 66 Operating
Guide.

6-3

COMPOUND STATEMENTS

A compound statement is a sequence of statements grouped to form a single
statement, for use where the syntactic structure of the language demands. A
compound statement is transparent to scopes and it is permissible to goto a
label that is set inside a compound statement.

The syntax is shown in Figure 6-7.

Compoundstatement
Statementlist

'BEGIN* Statementlist 'END*
Statement

Statement;Statementlist

Figure 6-7. Compound Statement Syntax.

BLOCKS

See Chapter 2.

DUMMY STATEMENTS

A dummy statement is a void whose execution has no effect e.g. a dummy
statement follows the colon in:

;label;*END*

The syntax is shown in Figure 6-8.

Dummystatement » Void

Figure 6-8. Dummy Statement Syntax.

CONDITIONAL STATEMENTS

The syntax of the conditional statement is:

Conditionals tatement s 'IF* Condition *THEN' Consequence
Consequence zs Statement

Conditionalstatement2 s 'IF' Condition 'THEN' Consequence2
'ELSE' Alternative

Consequence2 s S imples tat ement
Label: Consequence2

Alternative s Statement

Figure 6-9. Conditional Statement Syntax.

NOTE; Conditionalstatement is a possible form of Statement while
Conditionalstatement2 is a possible form of Simplestatement. In
effect each *ELSE* clause shall be matched with the most recent
'IF* for which there has not yet been an *ELSE* clause.

6-4

FOR STATEMENTS

GENERAL

The for-statement comprises a means of repeatedly executing a given
statement, the 'controlled statement*, for different values of a chosen
variable, the 'control variable', which may (or may not) occur within
the controlled statement. The effect of jun^s into the controlled
statement are that the control variable exists but has an undefined
value, and subsequent execution of the body may have detrimental and
unpredictable effects.

One form of for-statement is

'FOR' I: = 1 'STEP* 1 'UNTIL' 4,
6 *STEP* 2 'UNTIL* 10,
15 *STEP* 5 *UNTIL* 30
*D0' Statement

Other forms are exemplified by

'FOR' I: = 1,2,4,7,15 'DO' Statement

which is self-explanatory, and

'FOR' I: =1+1 'WHILE' X<Y 'DO' Statement

In the third example, the clause

I +1 'WHILE' X<Y

counts as a single for-element and could be used as one element in a list of
for-elements (the 'for-list').

As each for-element is exhausted, the next element in the list is used. The
syntax is shown in Figure 6-10.

Forstatement = 'FOR' Reference Assignmentsymbol Forlist 'DO' Statement
Forlist = Forelement

Forelement,Forlist
Forelement = Expression

Expression 'WHILE' Condition
Expression 'STEP' Expression 'UNTIL' Expression

Figure 6-10. For-Element Syntax.

The control variable must be a Reference i.e. either an anonymous reference
or a declared whole numbertype. The location of the control variable is
evaluated once only, prior to evaluation of the for-list.

6-5

FOR-ELEMENTS WITH 'STEP'

EXAMPLE:

Consider the element is denoted by;

el 'STEP' e2 'UNTIL' e3

The expressions are evaluated once only. First their values are evaluated in
the order in which they are met when reading from left to right. If these
values be denoted by vl, v2 and v3 respectively. Then, in sequence:

1. vl is assigned to the control variable
2. vl is then compared with v3; if (vl-v3)*v2>0, the for-element shall be

exhausted; otherwise
3. the controlled statement is executed;

^ 4. the value vl is set from the control variable, then incremented by v2
and the cycle repeated from step 1.

FOR-ELEMENTS WITH 'WHILE'

Consider that the element is denoted by:

el 'WHILE' Condition

Then, in sequence:

1. el is evaluated and assigned to the control variable
2. The condition is tested; if false the for-element is exhausted;

otherwise

3. The controlled statement is executed and the cycle repeated from step

Unlike the expressions considered in FOR ELEMENTS WITH STEP the expression
el and those occurring in the condition are evaluated repeatedly.

RETURN STATEMENTS

6-6

CHAPTER 7

PROCEDURES

A procedure is a body of program, written once only, named with an
identifier, and available for execution anywhere within the scope of the
identifier. There are- three possible methods of communication between a
procedure and its program environment, as follows.

1. The body uses formal parameters, of types specified in the heading of
the procedure declaration and represented by identifiers local to the
body. When the procedure is called, the formal parameters are replaced
by actual parameters, in one-to-one correspondence.

2. The body uses non-local identifiers whose scopes embrace the body. Such
identifiers are also accessible outside the procedure.

NOTE:For the 8086 compiler this does not apply to non-local identifiers
declared within a 'RECURSIVE* procedure which are not available within
inner procedure bodies (irrespective of the specification of any such
inner procedures).

3. An answer statement within the procedure body shall compute a single
value for the procedure, making its call suitable for use as a function
in an expression. A procedure that possesses a value shall be known as
a typed procedure.

The sjmtax for a procedure declaration is shown in Figure 7-1.

Proceduredec = Answerspec 'PROCEDURE' Procedureheading;Statement
Answerspec 'RECURSIVE' Procedureheading;Statement

Figure 7-1. General Syntax for a Procedure Declaration.

The second of the foregoing syntax alternatives is the form of declaration
for recursive procedures. If a procedure is defined in a manner that
directly or indirectly calls itself at run-time, that procedure is said to
'recursive' and must be explicity defined as such. The statement following
the procedure heading is the procedure body, which contains an answer
statement unless the answer specification is void, and which shall be
treated as a block whether or not it includes any local declarations.

ANSWER SPECIFICATION

The value of a typed procedure shall be given by one or more answer
statements (see Chapter '6) in its body, and its numeric type must be
specified at the front of the procedure declaration. An untyped procedure
has no answer statement, possesses no value, and has a void answer
specification before the word 'PROCEDURE' or 'RECURSIVE'. The syntax is
shown in Figure 7-2.

Answerspec 8 Numbertype
Void

Figure 7-2. Answer Specification Syntax.
7-1

PROCEDURE HEADING

The procedure heading shall give the procedure its name. It shall also
describe and list any identifiers used as formal parameters in the body. On
a call of the procedure, the compiler shall set up a correspondence between
the actual parameters in the call and the formal parameters specified in the
procedure heading. The syntax of the heading is shown in Figure 7-3.

Procedureheading « Id

Id(Parameterspeclist)
Parameterspeclist « Parameterspec

Parameterspec;Parameterspeclist

Figure 7-3. Procedure Heading Syntax.

PARAMETER SPECIFICATION

GENERAL

Any object in scope at the position of a procedure call may be passed to
that procedure by means of a parameter, whether it is an object of data, a
place in a program, or a procedure to be executed. For data there are two
distinct levels of communication; numerical values (for input to the
procedure) and data references (for input or output). Table 7-1 specifies
all the types of object that may be passed, the syntactic form of
specification, and the corresponding form of actual parameter that shall be
supplied in the procedure call. The syntax is shown in Figure 7-4:

Parameterspec = Specifier Idlist
Tablespec
Procedurespec

Specifier = 'VALUE' Numbertype
'LOCATION' Numbertype
Numbertype 'ARRAY'
'LABEL'
'SWITCH'

Figure 7-4. Parameter Specification Syntax.

7-2

A

Table 7-1, Parameters of Procedures

Object Formal Specification Actual Parameter

Numerical value 'VALUE' Numbertype Id^ Expression

Location of date 'LOCATION' Numbertype Id^ Reference

Name of array Numbertype 'ARRAY' Id^ Id

Name of table
2

Tablespec Id

Place in program 'LABLE' Id^ Destination

Name of switch 'SWITCH' Id^ Id

Name of procedure
3

Procedurespec Id

Composite specification has Idlist in place of Id
2

See TABLE PARAMETERS in this Chapter
3

See PROCEDURE PARAMETERS in this Chapter

VALUE PARAMETERS

The formal parameter is treated as though declared in the procedure body;
upon entry to the procedure, the actual expression is evaluated to the type
specified, and the value forthwith assigned to the formal parameter.

The formal parameter may be used subsequently for working space in the body;
if the actual parameter is a variable, its value is unaffected by
assignments to the formal parameter.

DATA REFERENCE PARAMETERS

Location, array and table parameters are all examples of data references.
Upon entry to the procedure, these formals are made to refer to the same
computer locations as those to which the actual parameters already refer.
Operations upon such formal parameters within the procedure body must
therefore be operations on the actual parameters. For example the values of
the actual parameters may be altered by assignments within the procedure.

LOCATION PARAMETERS

The actual parameter must be a Reference i.e. a simple data reference, an
array element, an indexed table identifier, a whole numbertype table-element
or an anonymous reference. Index expressions are evaluated upon entry to the
procedure as part of the process of obtaining the location of the actual
parameter. The numeric type of the actual parameter agrees exactly with the
formal specification. Part references shall not be used as location
parameters.

7-3

An example of a procedure heading, and a possible call of the same procedure
is

heading F ('VALUE'*INTEGER'N;'LOCATION''INTEGER'M)
call F (5*I+2,N[I])

where I is declared as 'INTEGER' and the N in the call is an
'INTEGER"ARRAY' of one dimension.

ARRAY PARAMETERS

As in an array declaration, the specified numeric type must apply to all the
elements of the array named. The numeric type of the actual array name
agrees with this formal specification. By indexing, within the body, the
procedure may refer to any element of the actual array.

TABLE PARAMETERS

The specification of a table parameter must be identical in form to a table
declaration except that presetting is not permitted. The syntax is shown in
Figure 7-5:

Tablespec = 'TABLE* Id Tableform
Tableform = [Width,Length][Elementdeclist]

Figure 7-5. Table Parameters Syntax.

The element declaration list must include such fields as are used in the
procedure body. Unused fields may be omitted.

PLACE PARAMETERS: LABEL PARAMETERS

The actual parameter must be a destination, i.e., a label or a switch
element. In the latter case, the index is evaluated once upon entry to the
procedure. The actual parameter shall be in scope at the call, even if it is
out of scope where the formal parameter is used in the procedure body.

PLACE PARAMETERS: SWITCH PARAMETERS

The actual parameter must be a switch identifier. By indexing within the
procedure body, the procedure is able to refer to any of the individual
labels that form the elements of the switch.

PROCEDURE PARAMETERS

Within the body of a procedure, it may be necessary to execute an unknown
procedure, i.e. a procedure whose name is to be supplied as an actual
parameter. The .features of the unknown procedure must be formally specified
in the heading of the procedure within which it is called.

7-4

EXAMPLE;

SupposethataprocedureGhasbeendeclaredas

'FLOATING»'PROCEDURE'G('VALUE''INTEGER*I,J;'INTEGER''ARRAY'A);Statement

andfurthersupposethataprocedureQhasaformalparameterFforwhichit
mayberequiredtosubstituteG.AdeclarationofQ,illustratingthe
necessaryspecificationmightbe

'PROCEDURE'Q('LABEL'S;'FLOATING''PROCEDURE'F
('VALUE''INTEGER','VALUE''INTEGER',

'INTEGER"ARRAY'));Statement

AtypicalcallofQwouldbeQ(LAB,G).Attheinnerlevelofparameter
specification,noformalidentifiersarerequired,nocomposite
specificationsarepermitted(asforIandJinG)andthespecifications
mustbeseparatedbycommas.Topursuetheexampletoadeeperlevelof
nesting,supposethataprocedureC66hasaparameterPforwhichitmaybe
requiredtosubstituteQ.AdeclarationofC66mightthenbe

'PROCEDURE'C66('PROCEDURE'P('LABEL','FLOATING"PROCEDURE'),
'SWITCH'S);Statement

AtypicalcallofC66wouldbeC66(Q,SW).Atthelevelofspecification
shownunderlinedinthelastexample,nofurtherparameterspecifications
shallberequired.

ThegeneralsyntaxforaprocedurespecificationisshowninFigure7-6.

Procedurespec=Answerspec'PROCEDURE'Procparamlist
Procparamlist«Procparameter

Procparameter,Procparamlist
Procparameter=Id

Id(Typelist)
Typelist=Type

Type,Typelist
Type=Specifier

'TABLE'

Answerspec'PROCEDURE'

NOTE:Procedureparametersarespecifiedbytheword'PROCEDURE'whetheror
nottheactualparameterstobesubstitutedarethenamesof
'RECURSIVE'procedures*Thenameofa'RECURSIVE'proceduremaybeused
asanactualparameter.

NONSTANDARDPARAMETERSPECIFICATION"

Theoptionalfacilities-describedintheBritishStandardapplicableto
'FIXED'numbersarenotimplemented.

7-5

THE PROCEDURE BODY

For purposes of scoping, a procedure declaration can be regarded as a block
at the place where it appears In the program text. Everything except the
body may be disregarded, and the formal parameters may be treated as though
declared within the body, labels Included. Identifiers that are non-local to
the procedure body shall be those In scope at the place of the procedure
declaration, subject to the restriction specified at the beginning of this
Chapter. Actual parameters must be In scope at the procedure call. For
example, the block

'BEGIN''INTEGER' I;
'INTEGER''PROCEDURE'P;

'ANSWER' I;
I:»0;
'BEGIN"INTEGER' I;

I;«2;
^ PRINT(P);

'END'

'END'

has the effect of printing zero.

7-6

CHAPTER 8

COMMUNICATORS

The separately compiled units of a program may communicate with each other
through 'COMMON* and with objects external to the program by means of the
communicators 'EXTERNAL' and 'ABSOLUTE'. In this implementation 'LIBRARY' is
used to include CORAL 66 text from a separate file and is therefore defined
in Chapter 10.

'COMMON' COMMUNICATORS

Global objects declared within a program are communicated to all separately
compiled units through a 'COMMON' communicator. This consists of a list of
'COMMON' items separated by semicolons all within round brackets following
the word 'COMMON', Such items shall be of three kinds, corresponding to the
division of objects into data, places and procedures. A 'COMMON' data item
is a declaration of the identifiers listed within it, exactly as specified
in Chapter 3. Communication of places and procedures shall take the form of
specification, as in the equivalent parameters of a procedure declaration
(see PLACE PARAMETERS and PROCEDURE PARAMETERS). For each identifier
specified in a 'COMMON' communicator there shall correspond an appropriate
declaration (or for labels, a setting) in the outermost block of one and
only one program unit. The syntax is as shown in Figure 8-1:

Commoncommunicator = *COMMON* (Commonitemlist)
Commonitemlist = Commonitem

Commonitem;Commonitemlist
Commonitem » Datadec

Overlaydec
Placespec
Procedurespec
Void

Placespec » *LABEL* Idlist
SWITCH Idlist

Figure 8-1. 'COMMON' Communicator Syntax.

The identity of each common item is determined by its overall position in
the 'COMMON' communicators when all the 'COMMON' communicators present in
the program unit are considered in the order in which they appear in the
text. Association of its identifier with the actual object requires this
position to be the same in the 'COMMON' communicators of all program units.
The use of a 'LIBRARY' file containing 'COMMON' communicators by all program
units is a means of ensuring that this is so.

'LIBRARY* COMMUNICATORS

See *LIBRAR5f* CALLS in Chapter 10.

8 - 1

'EXTERNAL' COMMUNICATORS

Global objects defined in program units written in other languages must be
defined through an 'EXTERNAL* coimnunicator. Places and procedures specified
in an 'EXTERNAL' communicator may also be written in CORAL 66; if present
in the outermost block of a program unit they will be identified with the
external object. 'EXTERNAL' data objects must not be defined in a CORAL 66
program unit; space for them must be allocated and associated with their
names by other means.

The syntax for 'EXTERNAL' communicator is shown in Figure 8-2:

Externalcommunicator 'EXTERNAL' (Extemalitemlist)
Externalitemlist Extemalitem

Extemalitem;Extemalitemlist
Extemalitem " Unsetdatadec

Placespec
Procedurespec
Void

Figure 8-2. 'EXTERNAL' Communicator Syntax.

Names used for external objects are subject to restrictions of length and
certain names of special significance to the assembler and linker may be
invalid as external names. Unsetdatadec is used syntactically only in the
above syntax; the communicator does not constitute a data declaration.

NOTE:External items are associated by name and there is no requirement that
external items be given in the same order in each program unit, or that
unused external names be included.

'ABSOLUTE' Coinmunicators

CORAL 66 programs refer to an object having known addresses by the use of an
'ABSOLUTE' communicator which associate an identifier with a specification
of the 'absolute' object, including its address. The form is similar to an
external communicator with the addition of the address. The syntax is shown
in Figure 8-3:

Absolutecommunicator s 'ABSOLUTE'(Abspluteitemlist)
Absoluteitemlist cs Absoluteitem

Absoluteitem;Absoluteitemlist
Absoluteitem s Absolutedatadec

Absoluteplacespec
Absoluteprocspec
Void

Absolutedatadec Numbertype Absoluteidlist
Numbertype 'ARRAY' Absolutearraylist
'TABLE' Absoluteid Tableform

Absoluteidlist s Absoluteid

Absoluteid, Absoluteid lis t
Absolutearraylist = Absolutearrayitem

Absolutearrayitem
Absolutearrayitem,Absolutearraylist

s Absoltueidlist[Sizelist]
Absoluteid s Id/Absoluteaddress
Absoluteaddress ss Integer

Figure 8-3. 'ABSOLUTE' Communicator Syntax.
0 - z

An example of an 'ABSOLUTE* communicator is:

'ABSOLUTE' ('LABEL' RESTART/0;
'BYTE''ARRAY'X/2000[10:100];
'PROCEDURE'CO/'HEX'(F809)('VALUE''BYTE'))

For an array the absolute address must be the address of the lowest byte
used; the array X in the last example occupies storage locations starting
from address 2000 (decimal) where X[10] is stored.

8-3

CHAPTER 9

NAMES AND CONSTANTS

IDENTIFIERS

Identifiers are used for naming objects of data, labels and switches,
procedures, macros and their formal parameters. An identifier consists of an
arbitrary sequence of letters and digits, starting with a letter. When
quotes are used to delimit language symbols any lower case letters are
considered equal to and indistinguishable from the corresponding upper case
letter. When language symbols are distinguished by upper case, identifiers
must not contain upper case letters. An identifier carries no information
in its form, e.g. single-letter identifiers are not reserved for special
purposes. It may be of any length up to and including 255 characters, except
that identifiers used to name external objects may be of restricted length.
As layout characters are ignored, spaces may be used in identifiers without
acting as terminators and without counting towards the length limit.

The syntax is shown in Figure 9-1:

Id Letter

Letter Letterdigitstring

Letterdigitstring Letter Letterdigitstring
Digit Letterdigitstring
Void

Letter

Digit

A or B or C ... 2 or a or b ... «

0 or 1 or 2 or 3 ... 9

Figure 9-1. Identifier Syntax.

NUMBERS

Numerical constants specified elsewhere in this specification are of the
following types:

Constants for presetting, optionally signed;
Integers and reals as primaries in expressions (a sign attached to a
primary shall belong syntactically to the expression and not to the
number);
Integers and signed integers used uecxarations or specifications,
typiccx-.^ lof aefining bit-fields and array bounds;
Integers giving addresses of 'ABSOLUTE' objects.

9-1

The syntax is shown in Figure 9-2;

Constant B Number

Addoperator Number

Number B Real

Integer

Signedinteger CS Integer
Addoperator Integer

Real S Digitlist.Digitlist
Digitlist@Signedinteger
@Signedinteger
Digitlist.Digitlist^Signedinteger
'HEX'(Hexlist.Hexlist)
'OCTAL'(Octallist.Octallist)

Integer S Digitlist
'OCTAL'(Octallist)
'HEX' (Hexlist)
'LITERAL' (Printingcharacter)

^ #OctalXlst

: #X fiexlist
binarylist

The further expansions are:

Digitlist B Digit
Digit Digitlist

Hexlist S Hexdigit
Hexdigit Hexlist

Octallist SS Octaldigit
Octaldigit Octallist

BlnaryXist m , Biuai^digit "
Blaaiydigit Binarylist

Hexdigit sz Digit
A

B

C

Octaldigit B

D

E

F

0

1

2

3

4

. Binary digit . - w

5

6

7

0

1

Figure 9-2. Number Syntax.
9 - 2

LITERAL CONSTANTS

A printing character shall have an integer value equal to its ASCII code
with bit 7 (the most significant bit of an 8 bit value) set according to the
compile-time option chosen. The integer value may be referred to within the
program by the literal operator e.g.

'LITERAL*(a)

has an integer value uniquely representative of 'a*
within the syntax of Integer (see NUMBERS).

The form is included

Layout characters omy be specif^ argument of by one of
the following special forms Itoown as escape sequences* i ,

Representation

B

t

* n ^

* p

* R
* s

* T

illlillllSilli
it ^

Character

Backspace\ -
Carriage Return
Line Feed'

Line Feed

Page Peed
Hubout

Space
Horizontal Tab-

Double qaote
Asterisk v ''-

STRINGS

A string is any succession of up to 255 characters (printing or layout)
enclosed in double quotation marks (string quotes). Double quotation marks
required to be part of the string itself must be represented by an escape
sequence as specified above and any of the other escape sequences shown
above may be used. Further to this it is possible to interrupt the string
for the purpose of spreading it over two or more lines of program text by
ending a line with a single asterisk and continuing from an asterisk written
on a subsequent line, provided that only layout characters appear between
the closing and reopening asterisks. For example a string may be written

"THIS IS A VERY *
* LONG STRING"

A string can be classed as an unconditional expression and its value is its
location but it shall not be used as a 'LOCATION' parameter.

The internal form of a string is that of a 'BYTE''ARRAY' of one dimension
with lower bound zero. Element zero holds the (unsigned) length (0-255)
characters and element one onwards holds the 'LITERAL' value for successive
characters of the string.

9-3

Separate copies of equivalent strings are created for each occurrence of the
string. For example in

'INTEGER' I;
I .--"STRING";
»IF' Ior"STRING" 'THEN* Statement

the condition is false since the distinct locations of two copies of
"STRING" are compared.

The syntax is as shown in Figre 9-3;

String = "any sequence of up to 255 characters
in which asterisk denotes an escape
sequence and in which double quote
must be represented by such an escape
sequence"

Figure 9-3. String Syntax.

9-4

CHAPTER 10

TEXT IN A PROGRAM

COMMENT

A program may be annotated by the Insertion of textual matter and this
comment is ignored by the compiler.

COMMENT SENTENCES

A CfMaiaeiit sentence may be written witliin & prograa tialt^erever a syabol or
c&n app^r, except -withla t3ie /COPE* and' of a^code

istat^ientP A comment sentence cwisists of the word 'COMMENT* lowed by
text and terminated by a semicolon. For obvious reasons the text must not
contain a semicolon. The entire comment sentence is ignored by the compiler.

BRACKETED COMMENT

Bracketed comment comprises any textual matter enclosed within round
brackets immediately after a semicolon of the program or wherever a
declaration or statement may appear.

The text may contain brackets provided that they are matched. Bracketed
comment (including the brackets) are ignored by the compiler.

'END' COMMENT

Annotation may be inserted after the word 'END' provided that it takes the
form of an identifier only. The 'identifier' is ignored by the coiiq)iler.

10 - 1

MACRO FACILITY

A CORAL 66 compiler embodies a macroprocessor, which may be regarded as a
self-contained routine which processes the text of a CORAL 66 program before
passing it to .the compiler proper. Its function is to enable the programmer
to define and use convenient macro names, in the form of identifiers, to
stand in place of cumbersome or obscure portions of text, typically code
statements. Once a macro name has been defined, the processor expands it in
accordance with the definition wherever it is subsequently used, until the
definition is altered or cancelled. However, the macro processor treats
cOTiments, constant character strings and the representations of numbers as
indivisible entitles, and does not expand any objects with the form of
identifiers within these entities. No character that could form part of an
identifier can be written adjacent to the use of a macro name or formal
parameters of a macro, as this would inhibit the recognition of such names.
A macro defintion may be written into the source program wherever a
declaration or statement may appear and is removed from it by the action of
the macro processor.

STRING REPLACEMENT

In the simplest use a macro name stands for a definite sequence of
characters: the macro body.

EXAMPLE:

The (fictitous) code statement

'CODE''BEGIN' 123,45,6 'END'

might be given the name SHIFT6. The macro definition would be written

'DEFINE' SHIFT6 '"CODE"BEGIN' 123,45,6 'END'";

The expansion, or body, can be any sequence of up to 255 characters in which
the rules of strings apply. For example, an asterisk within the body must

PARAMETERS OF MACROS

A macro may have parameters, as in the following example:

'DEFINE' SHIFT (N) "'CODE"BEGIN' 123,45,N 'END'";

Subsequent occurrences of SHIFT(6) would be expanded to the code statement
in the STRING REPLACEMENT example. A formal parameter, such as N above, is
written as an identifier. An actual pargeter (e.g. 6) is any string of
characters in which string quotes are matched, all round and square brackets
are nested and matched, and all occurences of a comma lie between round or
square brackets. This requirement enables commas to be used for separating
actual parameters. The number of actual parameters must be the same as the
number of formals, which must also be separated by commas.

10-2

NESTING OF MACROS

A macro definition may embody definitions or uses of other macros. When
a macro is defined the body is kept but not expanded. When the macro is
used it is as though the body were substituted into the program text,
and it is during this substitution that any other macros encountered are
processed. The use of a macro with parameters can be regarded as
introducing virtual macro definitions for the formal parameters before
the macro body is substituted. Thus, to continue from the previous
example, the occurence of SHIFT(6) would be equivalent to

'DEFINE' N "6";
'CODE"BEGIN* 123,45,N 'END'

followed immediately by deletion of the virtual macro N.

Throughout the scope of the macro SHIFT, the formal parameter N must not
be defined as a macro name. A formal parameter cannot be used in any
inner nested macro definition; neither in its body nor as a macro name
nor as a formal parameter. Furthermore no identifier in an actual
parameter string, or its subsequent expansions, can be the same as any
formal parameter of the calling macro.

DELETION AND REDEFINITION OF MACROS

The scope of a macro definition is from the point of definition until
either the end of the program text is reached or the macro name is
redefined or deleted. The scope of a macro is independent of the block
structure of the program. To delete a macro the construct

'DELETE' Macroname;

is given wherever the requirements of this standard allow a declaration
or statement to appear.

To delete more than one laacro a list of macro names separated hy commas
laay be giv«i instead of Kacroname* ' ,

The 'DELETE' construct is removed by the action of the macro processor.
Alternatively, a macro name may be redefined. Macro definitions that
have the same name are stacked and so processed that the most recent
definition is deleted, and the previous one reinstated.

NOTE: 'Recent' and 'previous' refer to the sequence as processed by the
Macro processor.

10-3

SYNTAX OF COMMENT AND MACROS

The syntax is shown in Figure 10-1:

Commentsentence

Bracketedcomment

Endcomment

' ^crodefinl^idn
Hacrodeflist. ^,

^Kacrodef

Macrobody
^ctodeletion

' Hacroaamelist

Macroname

Macrocall

Macrostringlist

Macrostring

COMMENT any sequence of
characters not Including a
semicolon;
(any sequence of characters in
which round brackets are matched)
Id

Hacrodeftlatj
.Hacrodef ' \ .

, ISsicrode£,Macrode£li8t ,
"Hacrobody" ,

Macroname(Idlist)"Macrobody"
String

Macronamelist /
Macronasffi

Hacro}iame»Hacro&asieXi8t
Id

Macroname

Macroname(Macrostringlist)
Macrostring
Macrostring,Macrostringlist
any sequence of up to 255

characters in which commas
are protected by round or square
brackets and in which such

brackets are properly matched
and nested

Figure 10-1, Syntax of Comment and Macros.

10-4

if ^LIBRARY' CALLS ,,

i A library cail is valid as a symbol at any point in the CORAL 66 text of a
fTprogram. The syntax is shown la Figure'

Llbrar>'caXl » *LIBRARY"'file specification"

; . Pigure 10-2, Library

®^ere :;Spe(d^ication is ": operating
|:;:sjp€cified in the ^propTiate. CORAL •.;66;;^peratibg:::GttideSi®^

pifte";.-^f^t;;of library ^cair ria ^tha^- 'thev-'&tire'^file
p6peci^ied •;are Inserted into. the "text ..at.:.the .pbi^r^of; tfe'Jibrary call.:

;possible to nest *LIBRAKT* calls but the depth of such nesting may be
il ij^ted :by:; the Input-oxitput systaB » ;

lA file inserted by a library call contains a whole nximber of CORAL 66
i; ;S3aabols; for example it is not: possible to use a library file to provide' the
|::j.leading characters ,of ;an identifier and append; further characters io the
.. main text.

10-5

APPENDIX A

SYNTAX RULES

Some recourse to plain English occurs in the syntax rules and is
underlined to avoid any possible confusion with formal class names and
terminal symbols.

Rule

Figure
Reference

Absoluteaddress CB Integer 8-3

Absolutearrayltem SB Absoluteidlist [Slzelist] 8-3

Absolutearrayllst S Absolutearrayitem
Absolutearrayitem, Absolutearrayllsl

8-3

Absolutecommunicator » 'ABSOLUTE'(Absoluteltemlist) 8-3

Absoluteitemllst 3 Absoluteitem

Absoluteitem;Absoluteitemlist
8-3

Absoluteitem m Absolutedatadec

Absoluteplacespec
Absoluteprocspec
Void

8-3

Absolutedatadec s Numbertype Absoluteidlist
Numbertype 'ARRAY' Absolutearrayllst
'TABLE' Absoluteld Tableform

8-3

Absoluteld s Id/Absoluteaddress 8-3

Absoluteidlist = Absoluteld

Absoluteld, Absoluteidlist
8-3

Actual s Expression
Reference

Destination

Name

6-4

Actuallist s Actual

Actual,Actuallist
6-4

Addoperator ss + 5-2

Alternative s Statement 6-9

Answerspec s Numbertype
Void

7-2

A - 1

Answerstatement

Arraydec

Arrayltan

Arrayltst

AssIgnmentStatement

Assignmehtsymbo1

Base

'ANSWER' Expression

Dnsetarraydec Presetlist

Idlist [Sizelist]

Arrayitem
Arrayitem,Arraylist

Variable Assigninentsjnnbol Expression

Id

Id [Signedinteger]

^ sS,,,--

Bitposition

Bitseparator

Block

Booleanword

Booleanword2

Bracke tedcomment

Byteposition

Codesequence

Integer

'BIT'

'BEGIN' Declist;Statementlist 'END'

Booleanword2

Booleanword4 'DIFFER' Booleanword 5

Booleanword3

BooleanwordS 'UNION' Booleanword6

> s ^ S-:

(any sequence of characters in which
round brackets are matched)

Signedinteger

assembler instructions in which
%name refers to CORAL defined name

A - 2

6-1

3-2

3-2

3-2

6^2

6-2

3-8

9-2

9-2

3-4

3-4

2-1

5-3

5-3

3-5

6-6

Codestatement - 'CODE»'BEGIN* Codesequence 'END' 6-6

Commentsentence s 'COMMENT' any sequence of characters 10-1
not including semicolon;

Commoncommun1cat0r s 'COMMON' (Commonitemlist) 8-1

Commonitem •s Datadec

Overlaydec
Placespec
Procedurespec
Void

8-1

Commonitem11st s Commonitem

Commonitem;Commonitemlist
8-1

Communicator s Commoncommunicato r
Absolutecoramunicator
Externalcommunicator
Void

8-1

Communicatorlist s Communicator

Communicator;Communicatorlist
8-1

Comparator s=

AVVAAV""

5-10

Ccsmparlson s Expression Comparator Expression 5-10

Compounds tatement s 'BEGIN' Statementlist 'END' 6-1

Condition s Condition 'OR' Subcondition
Subcondition

5-10

Conditionalexpression = 'IF' Condition 'THEN' Expression
'ELSE' Expression

5-9

Conditionalstatement s 'IF' Condition 'THEN' Consequence 6-1

Conditionalstatement2 s 'IF' Condition 'THEN' Consequence2
'ELSE' Alternative

6-1

Consequence s Statement 6-9

Consequence2 s Simplestatement
Labe1:Consequence2

6-9

Constant = Number

Addoperator Number
9-2

A - 3

Constantlist S Group
Group, Constantlist

3-2

Datadec Numberdec

Arraydec
Tabledec

2-1

Dec m Datadec

Overlaydec
Switchdec

Proceduredec

!2-l

Decllst s Dec

Dec; Declist
2-1

Destination

•

EC Label

Switch[Index]
6-4

Digit S 0 or 1 or 2 or 3 ... 9 9-1

Digitlist S Digit
Digit Digitlist

9-2

Dimension S Lowerbound;Upperbound 3-2

Dummys tat ement - Void 6-1

Elementdec m Id Numbertype Byteposition
Id Partwordtype Byteposition

Bitseparator Bitposition

3-3

Elementdeclist s Elementdec
Elementdec; Elementdeclist

Elementpresetlist m 'PRESET* Constantlist
Void

3-3

Elementscale B (Totalbits) 3-6

Endcomment s Id 10-1

Expression s Unconditionalexpression
Conditionalexpression

5-1

Externalcommunicator s 'EXTERNAL* (Externalitemlist) 8-2

Extemalitem 8 Unsetdatadec

Placespec
Procedurespec
Void

8-2

Extemalitemlist s Externalitem

Externalitem; Extemalitemlist
8-2

Factor s Primary
Booleanword

5-3

A - 4

Forelement * Expression
Expression *WHILE' Condition
Expression *STEF' Expression

'UNTIL* Expression

6-10

Forlist s Forelement

Forelement,Forlist
6-10

Forstatement ae 'FOR' Reference Assigiunentsymbol
Forlist 'DO' Statement

6-10

Gotostatement s 'GOTO' Destination 6-3

Group s Constantlist

(Constantlist)
Void

3-7

Hexdigit s= Digit
A

B

C

D

9-2

Hexlist s

E

F

Hexdigit
Hexdigit Hexlist

9-2

Id = Letter Letterdigitstring 9-2

Idlist ss Id

Id, Idlist
3-1

Index s Expression 5-6

Integer Digitlist
'OCTAL' (Octallist)
'HEX' (Hexlist)
'LITERAL' (printingcharacter)
#OctaXlist

' m Hexlist
.#B Binaryllst

9-2

Label s Id 4-1

Labellist s Label

LabeljLabellist
4-1

Length = Integer 3-3 .

Letter = A or B or C ... Z or a or b ... z 9-2

A - 5

Letterdigitstring 8: Letter Letterdigitstring
Digit Letterdigitstring
Void

9-1

Librarycall m "file specification" 10-2

Lowerbound a Signedinteger 3-2

Macrobody s String 10-1

Macrocall 8 Macroname

Macroname (Macrostringlist)
10-1

10-1

Macrodefintion s 'define* Macrodeflist 10-1

Macrodefllst s Macrodef

Macrodef, Macrodeflist
10-1

Macrodef s Macroname Macrobody
Macroname (Idlist) Macrobody

10-1

Macrodeletlon s 'DELETE' Macronamelist 10-1

Macroname s Id 10-1

Macronamellst SB Macroname

Macroname, Macronamelist
10-1

Macrostring B any sequence of up to 255 characters 10-1
in which commas are protected by
round or square brackets and in
which such brackets are properly
matched and nested

Macrostringlist s Macrostring
Macrostring, Macrostringlist

10-1

Multoperator s *

y
5-2

Name = Id 6-4

Number S5 Real

Integer
9-2

Numberdec SS Unsetnumberdec Presetlist 3-1

Numbertype m 'FLOATING'

'INTEGER'
3-1

A - 6

Octaldigit c 0

1

2

3

4

9-2

Octallist s

5

6

7

Octaldigit
Octaldigit Octallist

9-2

Overlaydec s 'OVERLAY' Base 'WITH' Unsetdatadec 3-9

Parameterspec s Specifier Idlist
Tablespec
Procedurespec

7-4

Parameterspeclist = Parameterspec
Parameterspec; Parameterspeclist

7-3

Partpriraary = Id[Index]
'BITS' .[Totalbits, Bitposition]

Typedprimary

5-5

Partreference = Id[Index]
'BITS' [Totalbits, Bitposition]

Reference

6-2

Partwordtype s Elementscale
'UNSIGNED' Eleraentscale

3-4

Placespec s 'LABEL' Idlist
'SWITCH' Idlist

8-1

Presetlist = - Constantlist
Void

3-7

Primary = Untypedprimary
Typedprinwry

5-3

Procedurecall £= Id

Id(Actuallist)
6-4

Proceduredec S Answerspec 'PROCEDURE'
Procedureheading; Statement

Answerspec 'RECURSIVE'
Procedureheading; Statement

7-1

Procedureheading C Id

Id (parameterspeclist)
7-3

Procedurespec s Answerspec 'PROCEDURE' Procparamlist 7-1

Procparameter s Id

Id (Typelist)
7-6

A - 7

Procparamllst

Programunit

Real

Reference

^y-

. Shlftop

Slgnedlnteger

Sijnpleexpression

Simplestatement

Slzelist

Specifier

Procparameter
Procparameter, Procparamlist

CORAL Id Communlcatorllst Block
'FINISH*

Dlgltllst.Dlgltllst
Dlgltll8t@Slgnedlnteger
Dlgltllst.Digltllst@Slgnedlnteger
'HEX'(Hexllst.Hexllst)
'OCTAL'(Octallist.Octallist)

Id

Id [Index]
Id [Index,Index]
[Index]

SHlft^aqpresalon Sbiftop Priasary
S:SSSS:SSSS5<:3wS:5i>s:?J?%i:^S¥S«;i4SSfSj?:S®S^

Integer
Addoperator Integer

Term

Addoperator Term
Simpleexpressio.n Addoperator Term

Assignmentstatement
Gotostatement

Procedurecall

Answerstatement

Codestatement

Compoundstatement
Block

Dummystatement
Forstatement

Dimension

Dimension,Dimension

'VALUE' Numbertype
'LOCATION' Numbertype
Numbertype 'ARRAY'
'LABEL*

'SWITCH'

A - 8

7—6

1-1

9-2

5-6

6-11

5-8

5-8

9-2

5-2

6-1

3-2

7-4

Statement

Statementlist

String

Subcondltlon

Switch

Swltchdec

Tabledec

Tableform

Tablespec

Term

Totalblts

Type

Typedprlmary

Typellst

Uncondltlonalexpresslon=

Label:S tatement

Slmplestatement
Conditionalstatement

Statement

Statement; Statementllst

"any sequence of zero to 255
characters In which asterisk

denotes an escape sequence
and In which double quote
must be represented by such
an escape sequence"

Subcondltlon *AND* Comparison
Comparison

Id

'SWITCH' Switch Asslgnmentsymbol
Labellist

6-1

6-7

9-3

and

10-1

5-10

4-1

4-1

'TABLE' Id Tableform Presetllst 3-3
'TABLE' Id [Width,Length]

[Elementdecllst Elementpresetllst]

[Width,Length][Elementdecllst]

'TABLE' Id Tableform

Factor

Term Multoperator Factor

Integer

Specifier
'TABLE'

Answerspec 'PROCEDURE'

Reference

Partprimary
'LOCATION'(Reference)
Numbertype(Expression)
Procedurecall

Integer

Type
Type, Tj^elist

Slmpleexpresslon
String

A - 9

3-3

7-5

5-2

5-7

7-6

5-5

7-6

5-1

Unsetdatadec B Unsetnumberdec

Unsetarraydec
Tablespec

2-1

Unsetnumberdec C Numbertype Idlist 3-1

Unsetarraydec S Numbertype 'ARRAY* Arraylist 3-2

Untypedprimary XB Real

(Expression)
5-4

Upperbound - Signedinteger 3-2

Variable S Reference

Partreference
6-2

Width ss Integer 3-3

A - 10

APPENDIX B

PROCEDURE PARAMETERS

Object Formal Specification Actual Parameter

Numerical value

Location of data

Name of array

Name of table

Place in program

Name of switch

Name of procedure

'VALUE' Numbertype Id^
•location* Numbertype Id^
Numbertype 'ARRAY' Id

2
Tablespec

'LABLE' Id^
'SWITCH' Id^

3
Procedurespec

Expression

Reference

Id

Id

Destination

Id

Id

2 - Composite specification has Idlist in place of Id
3 - See TABLE PARAMETERS in Chapter 7

- See PROCEDURE PARAMETERS in Chapter 7

B - 1

APPENDIXC

LANGUAGESYMBOLS

LanguageFigureLanguageFigure
SymbolSymbol

'ABSOLUTE'8-3'LABEL'7-4,and8-1
'AND'5-10'LIBRARY'10-2
'ANSWER'6-1'LITERAL'9-2
'ARRAY'3-2and7-4'LOCATION'5-5,and7-4
'BEGIN'2-1,6-1and6-6'MASK'5-3
'BIT'
'BITS'

3-4

5-6and6-2'OCTAL'
5-2

9-2
3-1'OR'5-10

'CODE'6-6'OVERLAY'3-9
'COMMENT'10-1'PRESET'3-3
'COMMON'8-1'PROCEDURE'7-1
'CORAL'1-1'RECURSIVE'7-1
'DEFINE'10-1

*STEP'

6-11
'DELETE'10-15-8
'DIFFER'5-35-8
'DO'6-106-10
'ELSE'5-9and6-1'SWITCH*4-1.7-4and8-1
'END'2—1and6—6'TABLE'3-3,7-5and7-6
'EXTERNAL'8-2'THEN'5-9ând6-1
'FINISH'1-1'UNION'5-3
'FLOATING'3-1'UNSIGNED'3-6
'FOR'6-10'UNTIL'6-10
'GOTO'6-3'VALUE'7-4
'HEX'9-2'WHILE'6-10
'IF'5-9and6-1'WITH'3-9
'INTEGER'3-1

C-1

, APPENDIX D

CHARACTER SET

Character Description and Chapter Reference

0123456789 digits. 9

a ... z

A ... Z

letters, 9

+ - adding operators, 5

* / multiplying operators, 5

* in escape sequences, 9

<<= = >=><> comparators, 5

() expression brackets, 5

bracketed comments, 10

[] index brackets, 3 and 4

table characters, 3
II

string quotes, 9 and 10
•

t i comma semicolon,separators for lists
•

« colon separator for bounds, 3

terminator for label setting, 6

:= <- assignment symbol, 3, 4 and 6

• point, 9

(a 'times ten to the power of*, 9

binary octal and hexadecimal numbers, 9

% trip character in code statements, 6

t
Language sjnnbol quotes, 1

D - 1

APPENDIX E

CORAL 66 CONSTRAINTS

1. Variable and procedure names may be of any length, but only the first
255 alphanumeric characters are significant.

2.' The maximum size of a macro definition is 255 characters.

3. The maximum number of arguments any procedure can have is 255.

4. The maximum size of arguments a procedure can have is 255 bytes, and a
recursive procedure 245.

5. The maximum size of arguments and local variables a recursive procedure
can have is 255.

6. The maximum number of procfedures that can be declared in any one
segment is 100. Common and Absolute definitions of procedures are
excluded from this figure.

7. Two dimensional arrays in ABSOLUTE and in EXTERNAL are allowed, but not
supported.

E - 1

APPENDIX F

SUMMARY OF IMPLEMENTATION SPECIFIC FEATURES

MAJOR FEATURES DEFINED AS OPTIONAL BY BRITISH STAITOARD

^RECURSIVE* procedures

^TABLE' facilities

,r" ut'.'™*".'. """ "•
'FIXED' and 'FLOATING' point numbers

•Fmo' point numbers are not implemented. 'FLOATING' point numbers are
implemented with some user choice of format and size. numoers are

NOTE. The 8080 compiler is optionally supplied without 'FLOATING'
point, and that 'FLOATING' point may also be suppressed by a
compile-tlme option. Fi'i.ea&ea oy a

'OVERLAY^ of data

ovIrl^^JeclLaSoi!"®"'®'' presetting is allowed in an
'BITS*

'BITS' is implemented, and extended to operate on 'BYTE' data.

. Set of dyadic logical operators

'DIFFER', 'UNION' and 'MASK'

data! implemented and are extended to operate on 'BYTE'
The communicators 'COmPN'. 'LIBRARY'. 'EXTERNAL' and 'ABSOLUTE'

bfJTercomTdulls'^^'f'^^ implemented for coMnunication•otS^lanTu^es between CORAL modules and objects defined in
'LIBRARY' is used for source statement inclusion.

F - 1

X/

'CODE* Statements

CODE statements may not possess a value In the way suggested by 6.6.6 of
the British Standard. 'CODE' statements consist of assembler source lines
for the appropriate computer and CORAL defined objects and constants may be
referred to by %name or %number.

NON STANDARD PROCEDURE PARAMETER FEATURES

These facilities, described in 6.7.4.10 of the British Standard, applicable
to FIXED numbers, are not implemented.

EXTENSIONS TO STANDARD 'CORAL'

All of the following represent extensions to the British Standard;

The 'return' statement. (Chapter 6)

The number type 'BYTE'. (Chapter 3)

The operators 'SRL' and 'SLL'. (Chapter 5)

The operator 'MOD'. (Chapter 5)

Expressions compared in conditions may be themselves conditional
expressions. (Chapter 5)

* Procedures may call other procedures declared at the same block
irrespective of their order of declaration and irrespective of
their inclusion in communicators. (Chapter 7)

* Data in inner blocks of a program, inner blocks of a procedure
body and within the body of a 'RECURSIVE' procedure may be preset.
(Chaper 3)

Integer numbers may be written in four additional notations to
those specified in the British Standard. (Chapter 9)

Facilities for including layout characters in literal constants
and strings. (Chapter 9)

The rules for comment sentences are more liberal than the
standard, comment sentences being allowed at any symbol or name in
the program text. The rules for bracketed comments are also
slightly more liberal than the standard. (Chapter 10)

A list of macros may be defined or deleted in a single 'DEFINE' or
'DELETE' (Chapter 10)

F - 2

ADDRESSING

.r

Addressing is appropriate to byte-addressed computers. Consecutive 'BTTE'

'̂ INTEGEb"® differing by one while consecutivelOTEGER data have addresses in ascending order differing by two. Values

IddrLses ' location operator and 'LOCATION' parameters are machine

F - 3

.V

r>

n

	1
	2
	3
	4

