CORAL 66
LANGUAGE REFERENCE
MANUAL

The Centre for
Computing History

N
DS SRl : m M I c RO FD CU S

CORAL 66

3 LANGUAGE REFERENCE

MANUAL

Version 3

Micro Focus Ltd. Issue 2

March 1982

Not to be copied without the consent of Micro Focus Ltd.

This language definition reproduces material from the British Standard BS5905
which is hereby acknowledged as a source.

Micro Focus Lid.
MICRO FOCUS Silobrs\ood,

Telephones :
01722 8843/4/5/6/7

Telex:

28536 MICROF G

© COPYRIGHT 1981, 1982 by Micro Focus Ltd.

ii

CORAL 66 LANGUAGE REFERENCE MANUAL

AMENDMENT RECORD

AMENDMENT
NUMBER

DATED

INSERTED BY

SIGNATURE

DATE

iii

PREFACE

This manual defines the programming language CORAL 66 as implemented in
Version 3 of the CORAL compilers known as RCC80 and RCC86. Now that
British Standard BS5905 has become the main source for CORAL
implementation its structure and style have been adopted.

Compared to previous versions of the RCC compilers. Version 3
incorporates 'TABLE' and 'OVERLAY', and allows additional forms of Real
numbers in line with the British Standard. Compiler error reporting has
been modified slightly - in particular all error messages now have

identifying numbers and are listed in appendices to the operating
manuals.

Micro Focus has now assumed direct responsibility for production of all
RCC CORAL manuals and believes that this will offer users a better
service than has been possible in the past.

iv

AUDIENCE

This manual is intended as a description of CORAL 66 for reference and
assumes familiarity with use of the language.

MANUAL ORGANIZATION

The manual contains the following Chapters and Appendices: .

"Chapter 1. Introduction", which introduces the language and describes
its structure and design.

"Chapter 2. Scoping", which describes the naming of variables, and the
scope of names used.

"Chapter 3. Data Referencing", which describes the manner in which data
can be referenced and the grouping of data.

"Chapter 4. Place Referencing", which describes the use of labels and
switches in a program.

"Chapter 5. Expressions", which describes the types of expression
available.

"Chapter 6. Statements", which describes the types of statement
available. :

"Chapter 7. Procedures”, which describes the use of procedures.

"Chapter 8. Communicators", which describes the manner in which
communication between programs can be specified.

"Chapter 9. Names and Constants", which describes the specification of
names and constant values.

"Chapters 10. Text in a Program", which describes the documentation of
a program, macro processing and source text inclusion facilities.

"Appendix A. Syntax Rules", which has a cross reference to the main
text for each syntax rule.

"Appendix B. Procedure Parameters", which is a summary of . the
correspondence between formal and actual parameters..

"Appendix C. Language Symbols", which lists the symbols available.
"Appendix D. Character Set", which lists available characters.

"Appendix E. CORAL 66 Constraints", which duplicates information on
constraints in CORAL 66 described in the CORAL 66 Operating Guide.

"Appendix F. Implementation Specific Features", which summarises those

features of this implementation of CORAL 66 that are not specified in
BS 5905.

RELATION TO THE BRITISH STANDARD SPECIFICATION

Users may wish to compare this implementation with standard CORAL 66 as
specified in British Standard BS 5905.

The structure of this manual follows the structure of BS 5905 and
includes material from BS 5905. Features additiomal to the standard are
indicated by grey shading. Where the standard is 1less specific than

this description of CORAL, or where onme of a number of alternatives has
been chosen from the standard, there is a single vertical line in the

left hand margin.

A summary of implementation specific features is given in Appendix G.

Yi

NOTATION IN THIS MANUAL

Throughout this manual the following notation 1is used to describe the
format of data input or output:

1. All words printed in small letters are genefic terms representing
names which will be devised by the programmer.

2. When material is enclbsed in square brackets [], it 1s an

indication that the material is an option which may be included or
omitted as required.

3. The first reference to a new term in text is underlined for
emphasis. The term 1is then used without redefinition in the
remainder of the manual. These first references are included in
the Index to the manual.

Headings are presented in this manual in the following order of
importance:

CHAPTER n

Chapter Heading
TITLE

ORDER ONE HEADING
ORDER TWO HEADING

Text 3 lines down
Order Three Headin ng :
Order Four Heading

Order Five Heading: Text on same line

Numbers ome (l) to nine (9) are written in text as letters
e.g. one.

Numbers ten (10) upwards are written in text as numbers e. g.
12,

See RELATION TO THE BRITISH STANDARD SPECIFICATION in this Preface for
the use of left hand margin bars and grey shading in this manual.

RELATED PUBLICATIONS

For details of operation of the CORAL 66 software refer to the
appropriate version document:

RCC80 or RCC86 CORAL 66 Operating Guide for use with your Operating
Systen

For details of Operating System, Messages, and File Structures refer to
the appropriate Operating System User manuals.

vii _

viii

TABLE OF CONTENTS

CHAPTER 1

INTRODUCTION

CORAL 66
CORAL 66 AND MICROPROCESSORS
THE CORAL 66 PROGRAM

NOTATION FOR LANGUAGE SYMBOLS

Using Single Quotes
Using Upper and Lower Case

LAYOUT CHARACTERS
SYNTACTIC METALANGUAGE

CHAPTER 2
SCOPING

BLOCK STRUCTURE
CLASHING OF NAMES

GLOBALS
LABELS
RESTRICTIONS CONNECTED WITH SCOPING

CHAPTER 3
DATA REFERENCING

NUMERIC TYPES

SIMPLE REFERENCES
ARRAY REFERENCES
PACKED- DATA

PRELIMINARY
TABLE DECLARATION
TABLE ELEMENT DECLARATION

General

Whole Number Table-Elements
Part-Word Table-Elements

'COMPLETE TABLE DECLARATION
REFERENCES TO TABLES AND TABLE-ELEMENTS

STORAGE ALLOCATION
PRESETTING

ix

1-1
1-1
1-2

1-2
1-2

1-3
1-4

2-1
2-1
2=2
2-2
2=-2

3-1
3-1
3-1
3=-2

3-2
3-3
3-3
3-4

3-4
3-4

3=5
3-5

3-6
3-7

GENERAL ' 327

PRESETTING OF SIMPLE REFERENCES AND ARRAYS 3-7
PRESETTING OF TABLES 3-8
PRESERVATION OF VALUES 3-9
OVERLAY DECLARATIONS 3-10
CHAPTER 4

PLACE REFERENCING

CHAPTER 5

EXPRESSIONS
SIMPLE EXPRESSIONS 5-1
PRIMARIES 5-1
GENERAL 5-1
UNTYPED PRIMARIES 5=2
TYPED PRIMARIES © 5=2
REFERENCES 5=2
- PART-PRIMARIES 5=3
LOCATIONS : 5=3
EXPLICIT TYPE CHANGING 54
FUNCTIONS 5-4
INTEGERS , 54
WORD-LOGIC St
EVALUATION OF EXPRESSIONS . 5=5
‘CONDITIONAL EXPRESSIONS : 5-6
GENERAL ' 5-6
CONDITIONS 5-6

CHAPTER 6

STATEMENTS
ASSIGNMENTS 6-1
GOTO STATEMENTS 6=2
PROCEDURE STATEMENTS 6=2
ANSWER STATEMENTS 6-3
CODE STATEMENTS _ . 6-3
COMPOUND STATEMENTS . 6=4
BLOCKS : 64
DUMMY STATEMENTS ' 6=4
- CONDITIONAL STATEMENTS 6-4
FOR STATEMENTS 6=5
GENERAL 6-5
FOR-ELEMENTS WITH 'STEP' 6-6
FOR-ELEMENTS WITH 'WHILE' " 6-6

RETURN STATEMENTS 6-6

CHAPTER 7

PROCEDURES
ANSWER SPECIFICATION 7-1
PROCEDURE HEADING 7=2
PARAMETER SPECIFICATION _ 7=2
GENERAL . o 7-2
VALUE PARAMETERS . : 7-3
DATA REFERENCE PARAMETERS 7-3
LOCATION PARAMETERS , 7-3
ARRAY PARAMETERS 7=
TABLE PARAMETERS | 7-4
PLACE PARAMETERS: LABEL PARAMETERS 7=4
PLACE PARAMETERS: SWITCH PARAMETERS 7-4
PROCEDURE PARAMETERS 7=4
NON-STANDARD PARAMETER SPECIFICATION 7-5
THE PROCEDURE BODY 7-6

CHAPTER 8

COMMUNICATIONS

"COMMON' COMMUNICATORS 8-1
"LIBRARY' COMMUNICATORS : : 8-1
VEXTERNAL '_COMMUNICATORS 8-2
TABSOLUTE' COMMUNICATORS 8=2

CHAPTER 9

NAMES AND CONSTANTS

IDENTIFIERS 9-1

NUMBERS . 9-1

LITERAL CONSTANTS _ 9-3

STRINGS 9-3
CHAPTER 10

TEXT IN A PROGRAM

COMMENT _ 10-1
COMMENT SENTENCES ' , , 10-1
BRACKETED COMMENT 10-1
'END' COMMENT 10-1

xi

MACRO FACILITY

STRING REPLACEMENT

PARAMETERS OF MACROS

NESTING OF MACROS

DELETION AND REDEFINITION OF MACROS

SYNTAX OF COMMENT AND MACROS

'LIBRARY' CALLS

APPENDIX A

SYNTAX RULES

APPENDIX B

PROCEDURE PARAMETERS

APPENDIX C

LANGUAGE SYMBOLS

APPENDIX D

CHARACTER SET

APPENDIX E

CORAL 66 CONSTRAINTS

APPENDIX F

SUMMARY OF IMPLEMENTATION

SPECIFIC FEATURES

xii

10-2
10-2
10-2
10-3
10-3
10-4

10-5

Figure

1-1
2~-1
3-1
3=-2
3-3

3-5
3-6

3-7
3-8
3-9
4=1
5-1
5=2
5-3
5-4
35=5
5-6
5-7
5-8
5-9
5-10
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-3
6-9
6-10
6-11
7-1
7=2
7-3

7-5
7-6
8-1
8-2
8-3
9-1
9-2
9-3
10-1

Table

7-1

ILLUSTRATIONS

niele

Program Unit Syntax
Block Syntax
Number Declaration Syntax

. Array Declaration Syntax

Table Declaration Syntax

Element Declaration Syntax

Whole Numbertype Table Element

Syntax for Partword Type in
Element Declaration

Syntax for Preset Assignment

Table Element Presetting Syntax

Overlay Declaration Syntax

Switch Syntax

General Expression Syntax

Simple Expression Syntax

Primary Operand Syntax

Untyped Primary Syntax

Typed Primary Syntax

Reference Syntax

Part Primary Syntax

Word Logic Syntax

Conditional Expression Syntax

Condition Syntax

General Statement Syntax

Asgignment Statement Syntax

GO TO Statement Syntax

Procedure Call Syntax

Answer Statement Syntax

Code Statement Syntax

Compound Statement Syntax

Dummy Statement Syntax

Conditional Statement Syntax

For-Element Syntax

Return Statement Syntax

Procedure Declaration Syntax

Ansver Specification Syntax

Procedure Heading Syntax

Parameter Specification Syntax

Table Parameter Syntax

Procedure Specification Syntax

'COMMON' Communicator Syntax

'EXTERNAL' Communicator Syntax

'ABSOLUTE' Communicator Syntax

. Identifier Syntax

Number Syntax

String Syntax

Comment and Macro Syntax
TABLES

Title

Parameters of Procedures

xiii

3-10

6-1

6-3
6-3
6-3
6-4
6-4
6=4 .
6-5
6-6
7-1
7-1
7=2
7-2
7-4
7=5
8-1
8-2
8-2
9-1
9-2
9-4
10-4

.—Page

7-3

CHAPTER 1

INTRODUCTION

CORAL 66

Cofal 66 is a general purpose programming language based on Algol' 60.
Originally designed by the Royal Radar Establishment, Malvern in 1966 it was
formally defined in "Official Definition of Coral 66" published by HMSO and

more recently in a British Standard, BS 5905, herein referred to as "The
British Standard".

The language is intended for use in basic software, such as compilers and
operating systems, and for real time applications of small computers where

typically execution time and storage overheads are critical -and input/output
requires specialized code. :

CORAL 66 AND MICROPROCESSORS

There are some aspects of microprocessor architecture that were not
envisaged when CORAL 66 was designed. Some compromises have been made in
balancing a desire to provide a full and standard implementation against the
need to exploit the microprocessor efficiently.

Some particular features of this kind are:-

1. CORAL assumes that data of type INTEGER can be used to contain machine
addresses whereas the addressing range of a processor such as the 8086
exceeds the capacity of its natural integers.

2, CORAL defines that consecutive INTEGER variables occupy storage

addresses differing by ome, which 1is not true of most modern
byte-addressed processors.

3. CORAL preset data must be statically initialized. When programs are to
be stored. in read-only memory such data must be stored with the

instructions, and it will not be possible to change the value of preset
data during the course of the program.

4. CORAL does not define a byte or character data type for efficient
storage of small integers and graphic characters.

THE CORAL 66 PROGRAM

A distinction is made between symbols and characters. Characters, standing
only for themselves, may be used in strings or as literal constants. Apart
from such occurrences, a program shall be regarded as a sequence of symbols,
each .visibly representable by a unique character or combination of
characters. The symbols of the language are defined in the British Standard
but the characters are not.

NOTATION FOR LANGUAGE SYMBOLS
Two notations are used to write CORAL 66 text. One notation uses single

quotes to delimit words which are to be treated as single symbols, while the
other uses upper and lower case instead of quotes.

Using Single Quotes

In this notation:- ' .

* Words surrounded by single quotes are treated as single

symbols -~ note, that each such symbol wmust have its own pair of
quotation marks even when adjacent to others.

* Lower case 1letters may be mixed with upper case in such symbols
and in identifiers. If so used a lower case letter is treated as

equal to the corresponding upper case letter so that the
identifiers : ’

eXAmple
Example

are not distinct names.

* Layout characters may be embedded in identifiers and in language
symbols e.g.

'BEGIN'
' GO TO'

Using Upper and Lower Case

In this notation:-

* Words in upper case are treated as single symbols. When adjacent
to each other such symbols at least one layout character must
separate them. :

* Identifiers must use only lower case - any changé of case will
terminate the current item.

* Layout characters may be embedded in identifiers but not in
language symbols - for example it is essential to write

GOTO
rather than

GO TO

* The language symbol, END, must be enclosed in single quotes where
it occurs to indicate the end of a CODE statement.

LAYOUT CHARACTERS

Except where they are used in strings and 'CODE' statements, layout

characters, that is space, horizontal tab, carriage return, page feed, line
feed and rubout, are ignored by the compilers.

A program is made up of symbols (e.g. 'BEGIN',=,4) and arbitrary
identifiers, which, by declaration, specification or setting, acquire the

status of single symbols. Identifiers are names referring to objects, which
are classified as follows:

(a) data (numbers, arrays of numbers, tables)
(b) places (labels and switches)
(c) procedures (functions and processes)

A program may be compiled in more than ome unit. To make it possible to
refer to chosen objects in more than one unit the names and types of such
objects are written outside the body of each unit in communicators. A
CORAL 66 program unit comprises the syntax shown in Figure 1-1.

'CORAL' name of program or unit
Optional communicators

'BEGIN'

Body of program unit

'END'

'FINISH'

Figure 1-l. Program Unit Syntax.

The body of the program unit with its enclosing 'BEGIN' and 'END' form a
block.

When a program is compiled ome of its units, designated as the master
segnent, is identified as the entry point of the program and the program
starts running from the beginning of its outermost block. A complete
CORAL 66 program is supplied in your CORAL 66 Operating Guide.

SYNTACTIC METALANGUAGE

The ‘syntactic metalanguage used to describe CORAL syntax consists of rules,
where each rule has on its left-hand side a class name, such as 'Statement’.
Such names appear in lower case without spaces and with an initial capital
letter. On the right-hand side of .a rule are the various alternative
expansions for the class name. These alternatives are each printed on a new
line. Where a single alternative spreads over more than one line of print,
the additional lines are inset in relation to the starting position of the
alternative. Each alternative expansion consists of a sequence of items
separated by spaces. The items themselves are either further class names or
terminal symbols, such as 'BEGIN'. The class name 'Void' is used for an
empty class. For example, a typical pair of rules might be

Specimen = 'ALPHA' Sign
"BETA' Sign
Sign = +
Void

Examples of Specimen complying with these rules are 'ALPHA'+ and 'BETA'

A complete summary of syntax rules is available for reference in Appendix A
of this manual.

CHAPTER 2

SCOPING

A named object may be brought into existence for part of a program and may
have no existence elsewhere (but see PRESERVATION OF VALUES in Chapter 3).

The part of the program in which it is declared to exist is known as its
scope. One effect of scoping is to increase the freedom of choosing names
for objects whose scopes do not overlap. Another effect 1is economy of

computer storage space. The scope of an object is determined by the block
structure of the program.

BLOCK STRUCTURE

A block is a statement consisting, internally, of one or more declarations
followed by one or more statements punctuated by semicolons and all
bracketed by 'BEGIN' and 'END'.

The syntax is as shown in Figure 2-1.

Block
Declist

'BEGIN' Declist; Statementlist 'END'
Dec

Dec; Declist

Datadec

Overlaydec

Switchdec

Proceduredec

Datadec = Numberdec

Arraydec

Tabledec

Dec

Figure 2-1., Block Syntax.

The declarations have the purpose of fully classifying new objects and
providing them with names (identifiers). As a statement can itself be a
block, merely by having the right form, blocks can be nested to an arbitrary
depth. Except for global objects (see GLOBALS), the scope of an object shall
be the block in which it is declared and within this block the object is

said to be local. The scope penetrates immner blocks, where the object is
said to be non-local..

CLASHING OF NAMES

Two ob,ects that hare the same name cannot have identical scopes. If two
objects have the same name and their scopes overlap, the clash of
definitions could give rise to ambiguity. Typically, a clash occurs when an
inner block is opened and a local object is declared to have the same name
as a non-local object that already exists. In this situation, the non-local
object continues to exist through the inner block (i.e., a variable
maintains its value) but becomes temporarily inaccessible. The local meaning
of the identifier always takes precedence.

GLOBALS

A program unit may refer to global objects. Such objects may be used in any
unit of the program as their scope is the entire program. To become global
an object is named in a communicator written before the body of the program
unit., For some types of object, such as "COMMON' data references, this takes
the form of a declaration, and is the only declaration required. Other types
of object, specifically 'COMMON' labels, 'COMMON' switches and 'COMMON'
procedures, must be fully defined within the outermost block of a program
unit. This means that 'COMMON' labels must be set, and 'COMMON' switches and
procedures must be declared, in one of the outermost blocks of the program.
Such objects are merely specified in a 'COMMON' or 'EXTERNAL' communicator
(see 'COMMON' COMMUNICATORS in Chapter 8) and are treated as local in every
outermost block of the program. Global objects declared in communicators are
treated as non-local. All globals are non-local in all the inner blocks of
any program unit. With these requirements for locality, questions of

clashing are resolved as described under CLASHING OF NAMES earlier in this
chapter.

LABELS

Any statement may be labelled by writing in front of it an identifier and a
colon. The scope of a label is the smallest block embracing the statement
that is labelled. Thus labels can be used before they have been set. It also
follows that the only means of entering a block is through its 'BEGIN'. It
is possible to jump into an outermost block from a different program unit by
the use of a 'COMMON' label, 'COMMON' switch or 'COMMON' procedure.

NOTE: Labels alone do not convert a compound statement into a block.
For a 'BEGIN', 'END' pair to comstitute a block they must be the
outermost such pair in a program unit or there must be one or
more declarations following 'BEGIN'. It is thus possible, though
undesirable, to jump into a compound statement.

RESTRICTIONS CONNECTED WITH SCOPING

No identifier other than a label must be used before it has been declared or
specified. Specifications means that the type of object to which an
identifier refers has been declared, but not necessarily the full definition
of the object (see COMMON COMMUNICATORS in Chapter 8). " Typically a

procedure identifier is specified as referring to a certain type of

procedure with certain types of parameters by the heading of the procedure
declaration, but the procedure is not fully defined until the end of the
declaration as a whole.

CHAPTER 3

DATA REFERENCING

NUMERIC TYPES

There are three numeriec types:

1. Floating point
2. Integer
3. Byte

Except in certain part-word table elements (see Part Word Table
Elements), all three types shall be signed. Numeric type shall be
indicated by the terminal symbols: 'FLOATING', 'INTEGER' or 'BYTE'.

The numeric type 'BYTE' occupies one memory byte i.e. 8 bits; the
numeric type 'INTEGER' occupies two bytes (16 bits); the 'FLOATING' size
and format depends on the compiler and options used. 'FLOATING' is not
accepted if 'FLOATING' is excluded from the compiler when generated or
by compile time option. '

SIMPLE REFERENCES

The simple objects of data are single numbers of 'FLOATING' 'INTEGER' or
'BYTE' types. Simple references shall refer to such objects e.g.

"INTEGER' 1I,J,K;
'BYTE' X,Y;

The declarations may include assignment of initial values; this is known
as presetting.

Requirements for presetting are specified later in this chapter. The
syntax for a number declaration is shown in Figure 3-1.

Numberdec = Unsetnumberdec Presetlist
Unsetnumberdec = Numbertype Idlist
Idlist = Id, Idlist

Figure 3-1. Number Declaration Syntax.

ARRAY REFERENCES

An array is restricted -to a one-dimensional or two-dimensional set of
numbers that are all of the same type. An array is represented by a
suitably declared identifier with, for each dimension, a lower and upper
index bound in the form of a pair of integer constants, e.g.

'"INTEGER' 'ARRAY' B[0:10];
'"FLOATING' 'ARRAY' C[1:3,1:3];

The lower bound cannot exceed the corresponding upper bound. If more
than one array is required with the same numeric type and the same
3-1

dimensions and bounds, a list of array identifiers separated by commas
may replace the single identifiers shown in the above examples. Arrays
with the same numeric type but different bounds or dimensions may also
occur in a composite declaration e.g.:

'INTEGER' 'ARRAY' P,Q,R[1:3],S[1:4],T,U[1:2,1:3];

An array identifier refers to an array in ‘its entirety, but its use in
statements is confined to the communication of the array reference to a
procedure. Elsewhere, an array identifier must be indexed so that it
refers to a single array element. Indices have the form of arithmetic
expressions, separated by commas, enclosed in square brackets after the
array 1dentifier. Each index is then evaluated to an integer as
specified in EVALUATION OF EXPRESSIONS in Chapter 5. The indices of a
two-dimensional array are evaluated in the order of occurrence when
reading the text from left to right. The syntax rules for an array
declaration that includes a presetting facility (see PRESETTING OF
SIMPLE REFERENCES AND ARRAYS later in this Chapter) are shown in
Figure 3-2.

’

Arraydec = Unsetarraydec Presetlist
Unsetarraydec Numbertype 'ARRAY' Arraylist
Arraylist = Arrayitem

Arrayitem, Arrayitem

Arrayitem = Idlist [Sizelist]
Sizelist = Dimension

Dimension, Dimension
Dimension = Lowerbound:Upperbound
Lowerbound = Signedinteger
Upperbound = Signedinteger

Figure 3-2. Array Declaration Syntax.

PACKED DATA
PRELIMINARY

There are two methods of referring to packed data; ome in which an
unnamed field is selected from any computer byte or adjacent pair of
bytes (see PART PRIMARIES in Chapter 5) and the other. in which the data
format is declared in advance. In the latter method the format is
replicated to form a table. A group of several- bytes (n) may be
partitioned into bit fields (where no field may extend into more than
two bytes), and the same partitioning shall be applied to as many such
groups (m) as are required. The total data space in bytes for a table is
then the multiple of bytes in a group by number of groups (nm). Each
group shall be known as a table-entry. The fields must be named, so that
a combination of field identifier and entry index selects data from one
‘or more computer bytes, known as a table-entry. The elements in an
entry may occupy overlapping fields and may leave unfilled spaces in the
entry. :

TABLE DECLARATION
A table declaration serves two purposes:

1. To provide the table with an identifier, and to associate this
identifier with an allocation of storage sufficient for the width
and number of entries specified, e.g.

'TABLE' APRIL [8,30]

is the beginning of a declaration for the table APRIL with 30

entries each eight bytes wide, requiring an allocation of 180 bytes
in all.

2. To specify the structure of an entry by -declaring the elements
contained within it, as specified in TABLE-ELEMENT DECLARATION in
this Chapter. Data-packing in this implementation involves no

'slack' bytes, each entry occupies the declared number of bytes and
the next entry follows immediately.

The general syntax for a table declaration is given in Figure 3-3.

Tabledec = 'TABLE' Id Tableform Presetlist

'TABLE' Id [Width,Length][Elementdeclist Elementpresetlist]

Tableform = [Width,Length][Elementdeclist]
Elementdeclist

= Elementdec

Elementdec;Elementdeclist
Width = Integer
Length = Integer

Figure 3-3. Table Declaration Syntax.

NOTE: Requirements for the two presetting mechanisms are specified in
PRESETTING OF TABLES later in this Chapter.

TABLE-ELEMENT DECLARATION

General

A table-element declaration associates an element name with a numeric
type and with a particular field of each and every entry in the table.
The field must be a whole 'BYTE' 'INTEGER' or 'FLOATING' number or a
part of ome or two computer .bytes and the form of declaration differs

accordingly. The syntax for an element declaration is given in
Figure 3-4. '

Elementdec = Id Numbertype Byteposition
Id Partwordtype Byteposition Bitseparator Bitposition
Byteposition = Signedinteger
Bitseparator = 'BIT'
»
Bitposition = Integer

Figure 3-4. Element Declaration Syntax.
3-3

Bitposition wust be numbered from zero upwards, and the least
significant bit of a word is designated bit-position zero. Normally,
table-elements should be located so that they fall within the declared
width of the table but compilers do not check the limits. To improve
program legibility the language word 'BIT' is provided as an alternative
to the comma. The meaning of Bitposition is specified in
Part-Word Table Elements later in this Chapter.

Whole Numbertype Table-Elements

As specified above the form of declaration for whole 'BYTE', 'INTEGER'
or 'FLOATING' table-elements is shown in Figure 3-5.)

Id Numbertype Byteposition

Figure 3-5. Whole Numbertype Table Element Syntax

EXAMPLES:
For example:
TICKETS 'INTEGER' 0
declares a 'pseudo-array' of elements named TICKETS. (True array
elements are located consecutively in store - see

STORAGE ALLOCATION.) Each element shall refer to a (signed) integer
at byte~position zero in an entry. Similarly, the example:

WEIGHT 'FLOATING' 2
locates WEIGHT from byte position 2 onwards.

Part-Word Table-Elements

Elements that occupy fields that are not whole 'INTEGER', 'FLOATING' or
'BYTE' numbers, aligned on computer bytes, must be declared as follows:

RAIN 'UNSIGNED' (4) 6,0
HUMIDITY 'UNSIGNED' (6) 7,0;
TEMPERATURE (10) 7,6;

for part-word integer elements. The number of bits required for the
field are given in brackets followed by the byte- and bit-position of
the field within the entry. Byte-position is the byte in which the least
significant (and lowest addressed) bit of the field is located, and

bit-position is the position .of the least significant bit in the
specified byte.

The word 'UNSIGNED' increases the capacity of the field for positive
numbers at the expense of eliminating negative numbers. For example,
RAIN 'UNSIGNED' (4) above, allows numbers from zero to 15, while

TEMPERATURE (10) allows from -29 to (29-1).

4N

The syntax of partwordtype, for substitution in the syntax in Figure 3-4
is shown in Figure 3-6.

Partwordtype = Elementscale
'UNSIGNED' Elementscale
Elementscale = (Totalbits).

Figure 3-6. Syntax for Partwordtype in Element Declaration.

Part-word integer elements may be up to 15 bits long if 'UNSIGNED' or 16
bits if signed, but their starting bit-position and length must be such

that they do not extend into more than two computer bytes.

COMPLETE TABLE DECLARATION

The complete table declaration built up so far as an illustrative
example might be:

'TABLE' APRIL [6,30]
[TICKETS 'INTEGER' O;
WEIGHT 'FLOATING' 2;
RAIN 'UNSIGNED' (4) 6,0;
SUNSHINE 'UNSIGNED' (4) 6,4;
HUMIDITY 'UNSIGNED' (6) 7,0;
TEMPERATURE (10) 7,6]

All the numbers used to describe and locate fields must be constants.

REFERENCES TO TABLES AND TABLE-ELEMENTS

A table-element 1is selected by indexing its field identifier. To
continue with the example used above, the rain for 6 April would be
written RAIN [5]. (An entry shall always have the conventional lower
bound of zero). In use, the names of table-elements are always indexed,
although a table identifier such as APRIL can stand on its own when a
table reference is passed to a procedure. The use of an index with a
table identifier shall select a byte from the table regarded as a
conventional array of 'BYTE' data with lower index bound zero. Thus the
implied bounds of APRIL are 0:179. A table name is normally indexed only
for the purpose of rumning through the table systematically, for example
to set all data to zero, or to form a base for overlaying.

STORAGE ALLOCATION

Computer storage space for data 1is allocated automatically at compile

time. One or more bytes (according to the number type) are allocated for
each simple reference and for each array element, and as many bytes are

allocated as are declared for each table-entry. In .any one composite
declaration, the compiler performs allocation serially.

EXAMPLE:

'BYTE' A,B,C;
'INTEGER' P,Q;

The locations of A, B and C become n, n+l and n+2 respectively, and

those of P and Q become m and m+l, m+2 and m+3 respectively, where
m and n are undefined and unrelated.

An '"INTEGER' number has its leas significant byte at the lower address.

In two-dimensional arrays, the second index is stepped first; the
declaration .

'ARRAY' A[1:2],B[1:2,1:2]
locates the elements

A[1],A[2],B[1,1],B(1,2],B{2,1],B[2,2]
in consecutive ascending locatioms.

PRESETTING
GENERAL

Some objects of data may be initalized when the program is loaded into
store by the inclusion of a presetting clause in the data declaratiom.
Presetting is not dynamic, and preset values that are altered by program
are not Trestored unless the program is reloaded. If preset data and
program instructions are ultimately stored in read-only memory it is not
possible for values to be altered by program (although the compiler does
not check this) and presetting should in such cases be reserved for
constant data.

2o

PRESETTING OF SIMPLE REFERENCES AND ARRAYS
The preset constants must be listed at the end of the declaration after
an assignment symbol, and are allocated in the order already specified
e.g.,

'INTEGER' A,B,C:=1,2,3; .
*INTEGER' 'ARRAY' K[1:2,1:2]:=11,12,21,22;

If desired for legibility, round brackets may be used to group items of
the presetlist, but such brackets are ignored by the compiler except for
checking that they occur as matched pairs. The number of comstants in
the presetlist must not exceed, but may be less than, the number of
references or array elements declared, and presetting ceases when the
presetlist is exhausted. The preset assignment symbol may optionally be
the only part of the presetlist present. The general syntax is given in
Figure 3-7.

Presetlist = Assignmentsymbol Constantlist
Assignmentsymbol = := '
Constantlist = Group,
Group, Constantlist
Group = Constant
(Constantlist)
Void

Figure 3-7 General Syntax for Preset Assignment.

NOTE. The main purpose of the final void may be seen by reference to
table presetting that follows. For the expansion of constants see
NUMBERS in Chapter 9.

PRESETITING OF TABLES
Two alternative mechanisms are available for presetting tables.

1. Either the internal structure of a table is completely disregarded
and the table treated as an ordinary one-dimensional array of
'BYTE' data, and preset as such.

2. All the table-elements are preset after their declaration list, as

shown at Elementpresetlist in the syntax specified in Figure 3-1
evgo’ ’

'"TABLE' GEARS [3,3]
[TEETHL 'UNSIGNED'(6) 0,0
TEETH1 'UNSIGNED'(6) 0,6
RATIO' UNSIGNED'(l1l) 0,1
ARC 'UNSIGNED'(5) 0,12
'PRESET' (57,19,3,), (50,25,2), (45,5,9,)]

i
3
2;

For table-element presetting the word 'PRESET' shall be used instead of
the assignment symbol specified in Figure 3-7. Each entry of the table
must be preset in succession as a group of elements, taken in the order
of their declaration. Voids in the 1list imply absence of any
assignment; this may be necessary to avoid duplication when fields
overlap, as do RATIO and ARC in the foregoing example. As specified in
Figure 3-7 brackets used for grouping constants in the list of presets
are ignored by the compiler. The general syntax is given in Figure 3-8.

Elementpresetlist = 'PRESET' Constantlist
Void

Figure 3-8 Table Element Presetting Syntax.

The previous example could, with equal effect but less convenience, be
expressed in the form:

'"TABLE' GEARS [3,3]
[TEETHL 'UNSIGNED'(6) 0,0
TEETH1 'UNSIGNED'(6) 0,6
RATIO' UNSIGNED'(1l1) 0,1
ARC 'UNSIGNED'(5) 0,12]
: = '"HEX'(F9), 'HEX'(34),0,
. 'HEX'(72), "HEX'(26),0,
YHEX'(6D), "HEX'(91),0

H
3
2;

PRESERVATION OF VALUES

Objects of data that have not been preset are not required to have
existence outside the scope of their declarations.

The values to which local identifiers refer are in general assumed to be

undefined when a block 1s first entered and whenever it is subsequently
re-entered.

NOTE: This is consistent with the fact that a block structured language
is designed for automatic overlaying of data. Local working space
- may therefore have been used for other purposes between one entry

to a block and the next.

When a data declaration contains a presetlist as permitted by the
Presetting requirements, the values of all the objects named in that
declaration remain undisturbed between successive entries to the block
‘or -procedure body, like ‘own' variables in ALGOL 60. Appearance of a
preset assigmment symbol, or in tables the word 'PRESET', suffice even
though the list of preset constants is void.

OVERLAY DECLARATIONS

Overlaying may be found desirable to enable global data space to be
reused whilst not required for i1its primary purpose, or to allow
apparently different data references to refer simultaneously to the same

objects of data, i.e., as alternative names and definitions of the same
storage locations.

NOTE: Indiscriminate use of overlaying should be avoided as it can lead
to confusion and obscurity.

To form an.overlay declaration, an ordinary declaration must be preceded
by a phrase of the form '

'OVERLAY' Base 'WITH'

where Base is a data reference that has previously been covered by a
declaration in the same 'COMMON' communicator or in the same program
unit. The base shall be a simple reference, a one-dimensional array
reference or a table reference treated as a one-dimensional array of
'BYTE' data. If the array or table identifier is not indexed, it must
refer to the location of its zero element (which may be conceptual).
Storage allocated by the overlay declaration shall start from the base,
shall proceed serially (as already specified) and shall not be overlaid
by succeeding declarations unless these are themselves overlay
declarations. There is no requirement to re-order storage that is

already allocated. The syntax of an overlay declaration is shown in
Figure 3-9. -

Overlaydec - 'OVERLAY' Base 'WITH' Unsetdatadec
Base = Id
Id[Signedinteger]

Figure 3-9. Overlay Declaration Syntax.

Note that presetting is not allowed. If the storage overlaid contains
preset objects then those preset values determine the initial values of
the overlaying objects; otherwise the storage is variable (and
re-usable) and no initial values can be assumed.

3-10

CHAPTER 4

PLACE REFERENCING

Place references refer to positions of program statements and the simplest
marker is the label. A switch is a preset and unalterable array of labels
with lower index bound one. These labels must be within scope at the switch’
declaration. Any use of the indexed switch name must refer to the
corresponding label. For example the switch declaration

'"SWITCH® S:= A,B,C
causes S[1] to refer to the label A, S[2] to B and S[3] to C.

The general syntax is shown in Figure 4-1.

Switchdec = 'SWITCH' Switch Assigmmentsymbol Labellist
Labellist = Label
Label, Labellist
- Switch = Id
Label = Id

Figure 4-1. Switch Syntax.

CHAPTER 5

EXPRESSIONS

The term 'expression' is reserved for arithmetic expressions. CORAL 66 has
no designational expressions of ALGOL 60 type. As there are no Boolean
variables and no.bracketed Boolean expressions (see CONDITIONAL EXPRESSIONS

later) the expressions after: 'IF' are termed conditions. The general syntax
for an expression is shown in Figure 5-1.

Expression = Unconditionalexpression
’ Conditionalexpression
Unconditional expression = Simpleexpression
String

Figure 5-1 General Expression Syntax.

NOTE: Requirements for strings are specified in Chapter 9.

PRIMARIES

SIMPLE EXPRESSIONS

Arithmetic is performed with the monadic and dyadic adding

operators + and -, and ~with the dyadic multiplying
operators * (multiply), / (divide) and 'MOD' (remainder of division). The
plus and minus operators join terms. The multiplication, division and
remainder operators join factors to form terms. There are no exponentiation
operators. The general syntax for simple expression is shown in Figure 5-2.

Simpleexpression = Term
Addoperator Term
Simpleexpression Addoperator Term

Term = Factor

Term Multoperator Factor
Addoperator = +
Multoperator =

Figure 5-2. Expressions Syntax.

GENERAL

Primaries are the basic operands in expressions, e.g. in the analysis of the
expression

X+Y* (A+B) -4

there are three terms, the primary X, the term Y*(A+B) and the primary -
5-1

4. The middle term is the product of two factors the primary Y and the
primary (A+B). To complete the analysis, all expressions from within
brackets are similarly analysed until no further reduction is possible and
no expression brackets remain. When an expression contains no word-logical
operators a factor shall be a primary, whether or not of a defined type. The
. syntax for a Primary operand is shown in Figure 5-3.

Factor = Primary
Booleanword

Primary = | Untypedprimary
. Typedprimary
Figure 5-3. Primary Operand Syntax.

UNTYPED PRIMARIES

Untyped primaries are those operands that cannot be classed as integer,
floating-point or byte without reference to their context, e.g. the number
3.1416 may be represented with varying degree of accuracy in each of the

number types. The same applies to an expression, whose type is determined by
context. The syntax is:

Untyped primary = Real
(Expression)

Figure 5-4. Untyped Primary Syntax.

A 'real' (see NUMBERS in Chapter 9) is an unsigned numerical constant
containing a decimal, octal or hexadecimal point or a tens exponent, or a
decimal point and a tens exponent.

TYPED PRIMARIES

Typed primaries are classified as follows:

Typed primary = Reference
Partprimary ’
'LOCATION' (Reference)
Numbertype (Expression)
Procedurecall
Integer '

Figure 5-5. Typed Primary Syntax.

REFERENCES

A simple reference, or a reference to an array element or whole numbertype
table-element has a type defined in its declaration. Such references,
termed References in the formal syntax, refer to data for which a whole

number of computer bytes are set aside. A further kind of Reference, the
anonymous reference, shall take the form

[Index]
5 -2

where the index is any expression evaluated as an integer to give the actual
location of a computer byte. An anonymous reference possesses all the
properties of an identified reference, except that it lacks an identifier.
Just as a variable I, declared as 'INTEGER' I, may be used in an expression
to refer to the contents of the two computer bytes allocated to I, so the
use of an anonymous reference in an expression will refer to the contents of
addresses defined by Index and (Index + 1). Such contents will be taken to
be of numeric type 'INTEGER' , irrespective of any declaration associating

that storage with some other type. (See also LOCATIONS later.) The syntax
for a Reference is shown in Figure 5-6.

.

Reference = 1Id
Id [Index]
Id [Index, Index]
[Index]

Index = Expression

Figure 5-6. Reference Syntax.

PART-PRIMARIES

Any single item of packed data may act as a typed primary. Such an item can
"be either:

1. a reference to a part-word table-element; or
2, a specified field of any typed primary.

In (1), the type is defined in the table declaration. in (2), the desired
field is selected by a prefix of the form

'BITS' [Totalbits, Bitposition]

in front of the typed primary to be operated upon. The result of this
operation is a positive integer value of width Totalbits and in units of the
bit at 'Bitposition'. Total bits must not be set equal to the full size of
'INTEGER' (i.e. Totalbits must be less than 16). The syntax for a

part-primary, which should be distinguished from that of a 'part-reference'
is: .

Partprimary = Id [Index]

'BITS' [Totalbits, Bitposition] Typedprimary
7 : .

Figure 5-7. Part Primary Syntax.

LOCATIONS

The computér location of any reference is obtainable by the locétion
operator, which is written in the form

'LOCATION' (Reference)

and has a value of type 'INTEGER'.

NOTE: 1If I and J refer to integers, ['LOCATION'(I)] is equivalent to I,
and 'LOCATION'([J]) 1is equivalent to J. The reasoning is as
follows. 'LOCATION'(I) is the address of the 'INTEGER' I.
Enclosure in square brackets forms an entity equivalent to an
identifier standing for this address, which by hypothesis is I.
Similarly [23] is equivalent to an identifier for the address 23

and 'LOCATION'([23]) is the address for which this fictitious
identifier stands, which is 23 by hypothesis.

EXPLICIT TYPE-CHANGING -

A typed primary may have its type changed, and an untyped primary may be
typed, by enclosure within round brackets preceded by a specific Numbertype
as specified in TYPED PRIMARIES earlier in this Chapter.

FUNCTIONS

The call of a typed procedure (see Chapter 7) may be treated as a function

and used as a primary in any expression. (For the syntax of a procedure
call, see Figure 6-4).

INTEGERS » '

An integer used in any expression (see Chapter 9) is assumed to have the
numeric type 'INTEGER' before any necessary type—changes enforced by
context. However a small integer, defined by the inclusive range -128 to
+255 shall be assumed to have type 'BYTE' initially.

WORD-LOGIC

Five dyadic logical operators are defined for use between primaries. Three
of these operators, concerned with operations on corresponding bits of their

operands, are defined in the British Standard. The other two, 'SRL' and
'SLL' are extensions of the standard.

The standard operators combine corresponding bits of the operands as
follows. The i th bit of the result is a given logical function of the i th
bits of the two operands, and the result as a whole is a typed primary of

numeric type 'INTEGER' except where both operands are of type 'BYTE' when
the result shall be of type 'BYTE'.

The operators are:

5

- O
o
[)

'DIFFER' '"UNION' '
0 1 1 :

0
0j0 1 010 1
111 0 111 1

[=] [=}

'DIFFER' is recognizable as 'mot equivalent', 'UNION' as 'inclusive or' and
'MASK' as 'and'. The shift operators are 'SLL' (shift left logical) and

'SRL' (shift right logical). The result has the type of the first operand
and a value equal to the bit pattern representing the first operand shifted
in the specified direction by the number of bits specified in the second
operand. The second operand must always be evaluated to type 'BYTE' and no
defined result shall be given for negative values thereof.

The syntax, continued from the GENERAL Syntax given under PRIMARIES is:

Booleanword = "Booleamword 2,
Booleanword 4 'DIFFER' Booleanword 5
Booleanword 2 = Booleanword 3,

Booleanword 5 'UNION' Booleamword 6
Booleanword 3 = Booleanword 6 'MASK' Shiftexpression

Booleanword & = Booleanword
Shiftexpression
Booleanword 5 = Booleanword 2
Shiftexpression
Booleanword 6 = Booleanword 3
Shiftexpression
Shiftexpression = Primary
Shiftexpression
Shiftop = 'SLL’'
ISRL'

Figure 5-8. Word Logic Syntax.

EVALUATION OF EXPRESSIONS

Expressions are used in assignment statements, as value parameters of
procedures and as integer indexes, all of which contexts determine the
numeric type finally required. CORAL 66 expressions are automatically
evaluated to this type, but in the process of calculation, data may be
subjected by the compiler to various intermediate transformations.

RS s R
All syntac in an expression are evaluated to the
required numeric type before the adding operators are applied. If an

expression is enclosed in round brackets, its terms are not 'outermost'
and this requirement no longer applies.

The expressions on either side of a Comparator (see CONDITIONS later)
will' be automatically evaluated to the same type, and the type is
'FLOATING' if either expression is 'FLOATING', else 'INTEGER' if either
expression is 'INTEGER' else 'BYTE'. However 'FLOATING' will not be used
when 'FLOATING' point is not installed in the compiler or is suppressed
by compile-time option.

The programmer may impose any desired system of evaluation by the use of

Numbertype (Expression), which is a typed primary and any occurrence of
which behaves like a variable, e.g. REF, declared as

Numbertype REF;

and assigned a value'by

REF Assignmentsymbol Expression

before it is used. For example if I and J are 'INTEGER' references and X
is ‘a "FLOATING' reference ‘the assignment statement

Xi=I=J

causes I and J to be converted to floating-point before subtraction,
whilst

X:="INTEGER' (I-J)

causes subtraction of integers before conversion to floating-point.
Although the order of evaluation of an expression is unspecified, the
following requirement concerning functions shall apply. Value parameters
are necessarily evaluated before the function itself is computed, so
that, for example, the order of evaluation of SIN (COS (Expression)) is
Expression, COS, SIN. Apart from this type of reversal, functions
occuring in a simple expression are evaluated in the order in which they

appear when the expression is read from left to right, regardless of
brackets.

CONDITIONAL EXPRESSIONS

GENERAL

The general syntax for a conditional expression is:

Conditionalexpression = 'IF' Condition 'THEN' Expression
'ELSE' Expression

Figure 5-9. Conditional Expression Syntax.

The expressions following 'THEN' and 'ELSE' are known as the
consequent expression and the alternative expression respectively. The
value of a conditional expression is the value of the consequent
expression if the condition is true; it is the value of the alternative
expression if the condition is false.

The numeric type used to evaluate the condition has no effect on the
evaluation of the comsequent or alternate expressions. Consequent and
alternative expressions are not prevented from being regarded as
syntactically outermost by their appearance in a conditional expression.

CONDITIONS

A condition consists of one or more arithmetic comparisons. Comparisons
are connected by the Boolean operators 'OR' and 'AND', of which 'AND'
takes precedence. The permissible arithmetic comparators are 'less
than', 'less than or equal to',, 'equal to', 'greater than or equal to',

'greater than', and 'not equal to'. The general syntax is shown in
Figure 5-10.

Condition = Condition 'OR' Subcondition
Subcondition
Subcondition = Subcondition 'AND' Comparison
: Comparison

Figure 5-10. Condition Syntax.

The Boolean operators have their usual meanings, the 'OR' being inclusive.
Conditions and subconditions are evaluated from left to right only as far as

necessary to determine truth or falsity. Comparisons are evaluated in the
order in which they appear when a condition is read from left to right.

NOTE: No overflow detection is required by the definition of CORAL 66.
Comparisons may give rise to overflow if the algebraic difference
of the values compared exceeds the range of the particular number
type even though the compared values are within the range. This
range is particularly limited for 'BYTE' quantities.

CHAPTER 6

STATEMENTS

The general syntax of a statement is shown in Figure 6-1.

Statement = Label:Statement
Simplestatement
Conditionalstatement

Simplestatement = Assignmentstatement
Gotostatement
_Procedurecall
Answerstatement
Codestatement
Compounds tatement
Block
Dummystatement

Figure 6-1. General Statement Syntax.

Statements are executed in the order in which they are written, except that

a pgoto statement may interrupt this sequence without return, and a
conditional statement may cause certain statements to be skipped.

ASSIGNMENTS

The 1left-hand side of an assignment statement must always be a data
reference, and the right-hand side must be an expression for procuring a
numerical value. The result of the assignment is that the left-hand side
refers to the new value until this is changed by further assignment, or
until the value is lost because the reference goes out of scope (but see
PRESERVATION OF VALUES in Chapter 3). The expression on the right hand side
is evaluated to the numeric type of the reference, with automatic type
conversion as necessary. Functions occurring in an assignment statement are
evaluated in the order in which they are encountered when reading the text
from left to right. The left-hand side may be a reference or a part
reference i.e. a part-word table element or some selected field of a
Reference. When assignment is made to a part reference, the remaining bits

of the computer byte or bytes shall remain unaltered. As examples of
assignment, ‘

'INTEGER' I;
I:=4

has the effect of placing the integer 4 in the location allocated to I, and

'BITS'[2,6]X:=3

has the effect of placing the binary digits 11 in bits 7 and 6 of the first
or only byte allocated to X. This last statement is treated in a similar

manner to an assignment that has on its left-hand side an unsigned integer
table-element. The statement

"BITS'[1,15]['"LOCATION' (1)+2]:=1

has the effect of forcing the sign bit of the two bytes immediately
following I to 'one'.

The general syntax of the assignment statement is shown in Figure 6-2.

- Assignmentstatement = Variable Assignmentsymbol Expression

Variable = Reference
. Partreference
Partreference = 14 [Index]

'BITS' [Totalbits, Bitposition] Reference

Figure 6~2. Assignment Statement Syntax.
There is no form of multiple assignment statement.

GOTO STATEMENTS

The goto statement causes the next statement for execution to be the one
having a given label. The label may be written explicitly after 'GOTO' , or
referenced by means of a switch whose index lies within the range 1 to n,
where n is the number of labels specified in the switch declaration. The
syntax is as shown in Figure 6-3.

Gotostatement = 'GOTO' Destination
Destination = Label
Switch [Index]

Figure 6-3. GOTO Statement Syntax.

NOTE: No range checking of a switch index is performed so that programs

requiring such range checking must include explicit statements to
validate the index.

PROCEDURE STATEMENTS

A procedure identifier, followed in parentheses by a list of actual
parameters (if any) is known generally as a procedure call. If the procedure
possesses a value, it may be used as a primary in an expression, but whether

it possesses a value or not, a procedure call may also stand alone as a
statement. The call of the procedure causes:

1. the formal parameters in the procedure declaration to be replaced by
the actuals in a manner that depend on the formal parameter
specifications (see PARAMETER SPECIFICATION in Chapter 7); the
replacement is effected in the order in which the parameters are read
when reading from left to right

2. the procedure body to be executed before the statement dynamically
following the procedure statement is obeyed.

6 -2

The syntax for a procedure call is shown in Figure 6-4.

Id
Id(Actuallist)
Actual
Actual,Actuallist
Actual = Expression
Reference
Destination
Name
Name = Id

Procedurecall

Actuallist

Figure 6-4. Procedure Call Syntax.

NOTE: The purpose of the four types of actual parameter is described in
PARAMETER SPECIFICATION in Chapter 7.

ANSWER STATEMENTS

An answer statement is used only within a typed procedure body, and is the
means by which a value is given to the procedure. It causes the expression
in the answer statement to be evaluated to the numeric type of the

procedure, followed by immediate exit from the procedure body. The syntax
is:
Answerstatement = 'ANSWER' Expression

Figure 6-5. Answer Statement Syntax.

CODE STATEMENTS

Any sequence of assembler source statements enclosed by 'CODE''BEGIN' and
'END'. may be used as a CORAL 66 statement. For communication between code
and other statements it is possible to use any CORAL 66 identifier of the
program within the code statement, provided that the identifier is in scope.
Such use of an identifier must be indicated by preceding it by a Z. The
identifier must also be followed by a printing delimiter (such as
semicolon). The syntax for a code statement is:

Codestatement = 'CODE' 'BEGIN' Codesequence 'END'
Codestatement = assembler instructions in which % name
refers to CORAL defined name

Figure 6-6. Code Statement Syntax.

NOTE: Further requirements for code statements, examples 'of code

statements and details of the text substituted by the compiler
for Z identifier are given in the appropriate CORAL 66 Operating
Guide.

COMPOUND STATEMENTS

A compound statement is a sequence of statements grouped to form a single
statement, for use where the syntactic structure of the language demands. A
compound statement is transparent to scopes and it is permissible to goto a
label that is set inside a compound statement.

The syntax is shown in Figure 6-7.

Compoundstatement = 'BEGIN' Statementlist 'END'
Statementlist = Statement
Statement;Statementlist

Figure 6-7. Compound Statement Syntax.

BLOCKS

See Chapter 2. .

DUMMY STATEMENTS

A dummy statement is a void whose execution has no effect e.g. a dummy
statement follows the colon in:

;label: 'END'

The syntax is shown in Figure 6-8.

Dummystatement = Void

Figure 6-8. Dummy Statement Syntax.

CONDITIONAL STATEMENTS

The syntax of the conditional statement is:

Conditionalstatement = 'IF' Condition 'THEN' Consequence
Consequence = Statement
Conditionalstatement2 = 'IF' Condition 'THEN' Consequence2
'ELSE' Alternative
Consequence2 = Simplestatement
Label: Consequence2
Alternative = Statement

Figure 6-9. Conditional Statement Syntax.

NOTE: Conditionalstatement is a possible form of Statement while
Conditionalstatement2 is a possible form of Simplestatement. In
effect each 'ELSE' clause shall be matched with the most recent
'IF' for which there has not yet been an 'ELSE' clause.

6 -4

FOR STATEMENTS

GENERAL

The for-statement comprises a means of repeatedly executing a given

statement, the 'controlled statement', for different values of a chosen
variable, the 'control variable', which may (or may not) occur within
the controlled ‘statement. The effect of . jumps into the controlled
statement are that the control variable exists but has an undefined
value, and subsequent execution of the body may have detrimental and

unpredictable effects.
One form of for-statement is
'FOR' I: = 1 'STEP' 1 'UNTIL' 4,
6 'STEP' 2 'UNTIL' 10,
15 'STEP' 5 'UNTIL' 30
'DO' Statement
Other forms are exemplified by
'FOR' I: = 1,2,4,7,15 'DO' Statement
which is self-explanatory, and
'FOR' I: = I+l 'WHILE' X<Y 'DO' Statement
In the third example, the clause

I +1 'WHILE' X<Y

counts as a single for-element and could be used as one element in a list of
for-elements (the 'for-list').

As each for-element is exhausted, the next element in the list is used. The
syntax is shown in Figure 6-10,

Forstatement = 'FOR' Reference Assignmentsymbol Forlist 'DO' Statement
Forlist = Forelement

Forelement, Forlist
Forelement = Expression :

Expression 'WHILE' Condition

Expression 'STEP' Expression 'UNTIL' Expression

Figure 6-10. For-Element Syntax.

The control variable must be a Reference i.e. either an anon&mous reference
or a declared whole numbertype. The location of the control variable is
evaluated once only, prior to evaluation of the for-list.

FOR-ELEMENTS WITH 'STEP'

EXAMPLE:

Consider the element is denoted by:

el 'STEP' e2 'UNTIL' e3

The expressions are evaluated once only. First their values are evaluated in
the order in which they are met when reading from left to right. If these
values be denoted by vl, v2 and v3 respectively. Then, in sequence:

1.
2.

3
4.

vl is assigned to the control variable

vl is then compared with v3; if (v1-v3)*v2>0, the for-element shall be
exhausted; otherwise

the controlled statement is executed;

the value vl is set from the control variable, then incremented by v2
and the cycle repeated from step 1.

FOR-ELEMENTS WITH 'WHILE'

Consider that the element is denoted by:

el 'WHILE' Condition

Then, in sequence:

el is evaluated and assigned to the control variable

The condition is tested; if false the for-element is exhausted;
otherwise

The controlled statement is executed and the cycle repeated from step

1.

Unlike the expressions considered in FOR‘ELEMENTS WITH STEP the expression
el and those occurring in the condition are evaluated repeatedly.

RETURN STATEMENTS

CHAPTER 7

PROCEDURES

A procedure is a body of program, written once only, named with an
identifier, and available for execution anywhere within the scope of the
identifier. There are three possible methods of communication between a
procedure and its program environment, as follows.

1. The body uses formal parameters, of types specified in the heading of
the procedure declaration and represented by identifiers local to the
body. When the procedure is called, the formal parameters are replaced
by actual parameters, in one-to-one correspondence.

2. The body uses non-local identifiers whose scopes embrace the body. Such
identifiers are also accessible outside the procedure.

NOTE:For the 8086 compiler this does not apply to non-~local identifiers
declared within a 'RECURSIVE' procedure which are not available within
inner procedure bodies (irrespective of the specification of any such
inner procedures).

3. An answer statement within the procedure body shall compute a single

value for the procedure, making its call suitable for use as a function

in an expression. A procedure that possesses a value shall be known as
a typed procedure.

The syntax for a procedure declaration is shown in Figure 7-1,

Proceduredec = Answerspec 'PROCEDURE' Procedureheading;Statement
Answerspec 'RECURSIVE' Procedureheading;Statement

Figure 7-1. General Syntax for a Procedure Declaration.

The second of the foregoing syntax alternatives is the form of declaration
for recursive procedures. If a procedure is defined in a manner that
directly or indirectly calls itself at run-time, that procedure is said to
'recursive' and must be explicity defined as such. The statement following
the procedure heading is the procedure body, which contains an answer
statement unless the answer specification is void, and which shall be
treated as a block whether or not it includes any local declarationms.

ANSWER SPECIFICATION

The value of a typed procedure shall be given by one or more answer
statements (see Chapter ‘6) in its body, and its numeric type must be
specified at the front of the procedure declaration. An untyped procedure
has no answer statement, possesses no value, and has a void answer

specification before the word 'PROCEDURE' or 'RECURSIVE'. The syntax is
shown in Figure 7-2.

Answerspec = Numbertype
Void

Figure 7-2. Answer Specification Syntax.
7-1

PROCEDURE HEADING

The procedure heading shall give the procedure 1its name. It shall also
describe and list any identifiers used as formal parameters in the body. On
a call of the procedure, the compiler shall set up a correspondence between

the actual parameters in the call and the formal parameters specified in the
procedure heading. The syntax of the heading is shown in Figure 7-3.

Procedureheading = 14

Id(Parameterspeclist)
Parameterspeclist = Parameterspec

Parameterspec;Parameterspeclist

Figure 7-3. Procedure Heading Syntax.

PARAMETER SPECIFICATION

GENERAL

Any object in scope at the position of a procedure call may be passed to
that procedure by means of a parameter, whether it is an object of data, a
place in a program, or a procedure to be executed. For data there are two
distinct levels of communication; numerical values (for input to the
procedure) and data references (for input or output). Table 7-1 specifies
all the types of object that may be passed, the syntactic form of
specification, and the corresponding form of actual parameter that shall be
supplied in the procedure call. The syntax is shown in Figure 7-4:

Parameterspec = Specifier 1dlist
Tablespec
Procedurespec

Specifier = 'VALUE' Numbertype

'"LOCATION' Numbertype
Numbertype 'ARRAY'
'"LABEL'

'SWITCH'

Figure 7-4. Parameter Specification Syntax.

Table 7-1.

Parameters of

Procedures

Object

Formal Specification

Actual Parameter

Numerical value 'VALUE' Numbertype Idl Expression
Location of date 'LOCATION' Numbertype Id1 Reference
Name of array Numbertype 'ARRAY' Id1 1d

Name of table Tablespec2 Id

Place in program 'LABLE' Id1 Destination
Name of switch 'SWITCH' Id! 1d

Name of procedure Procedurespec3 Id

1 - Composite specification has Idlist in place of Id
2 - See TABLE PARAMETERS in this Chapter
3

- See PROCEDURE PARAMETERS in this Chapter

VALUE PARAMETERS

The formal parameter is treated as though declared in the procedure body;
upon entry to the procedure, the actual expression is evaluated to the type
specified, and the value forthwith assigned to the formal parameter.

The formal parameter may be used subsequently for working space in the body;

if the actual parameter is a variable, its value is unaffected by
assignments to the formal parameter.

DATA REFERENCE PARAMETERS

Location, array and table parameters are all examples of data references.
Upon entry to the procedure, these formals are made to refer to the same
computer locations as those to which the actual parameters already refer.
Operations upon such formal parameters within the procedure body must
therefore be operations on the actual parameters. For example the values of
the actual parameters may be altered by assignments within the procedure.

LOCATION PARAMETERS

The actual parameter must be a Reference i.e. a simple data referemnce, an
array element, an indexed table identifier, a whole numbertype table-element
‘or an anonymous reference. Index expressions are evaluated upon entry to the
procedure as part of the process of obtaining the location of the actual
parameter. The numeric type of the actual parameter agrees exactly with the
formal specification. Part references shall not be used as location
parameters.

7-3

An example of a procedure heading, and a possible call of the same procedure
is :

heading F ('VALUE''INTEGER'N; "LOCATION''INTEGER'M)
call F (5*%I+2,N[I])

where I 1is declared as ‘'INTEGER' and the N in the call is an .
'"INTEGER' 'ARRAY' of one dimension.

ARRAY PARAMETERS

As in an array declaration, the specified numeric type must apply to all the
elements of the array named. The numeric type of the actual array name
agrees with this formal specification. By indexing, within the body, the
procedure may refer to any element of the actual array.

TABLE PARAMETERS

The specification of a table parameter must be identical in form to a table

declaration except that presetting is not permitted. The syntax is shown in
Figure 7-5:

Tablespec = 'TABLE' Id Tableform
Tableform = [Width,Length][Elementdeclist]

Figure 7-5. Table Parameters Syntax.

The element declaration list must include such fields as are used in the
procedure body. Unused fields may be omitted.

PLACE PARAMETERS: LABEL PARAMETERS

" The actual parameter must be a destination, i.e., a label or a switch
element. In the latter case, the index is evaluated once upon entry to the
procedure. The actual parameter shall be in scope at the call, even if it is
out of scope where the formal parameter is used in the procedure body.

PLACE PARAMETERS: SWITCH PARAMETERS

The actual parameter must be a switch identifier. By indexing within the
procedure body, the procedure is able to refer to any of the individual
labels that form the elements of the switch.

PROCEDURE PARAMETERS

Within the body of a procedure, it may be ‘necessary to execute an unknown
procedure, i.e. a procedure whose name is to be supplied as an actual
parameter. The .features of the unknown procedure must be formally specified
in the heading of the procedure within which it is called.

.

. *peiusmatdmy 30U aae ézaqmnu @IX1d,
03 91qedoridde paepuels YSTITig SYy UT paQrIdsap- S9TITIIoe3 TeuOTIdOo 3Yyg

_NOILVOI4IDIdS YALINVIVd QIVANVLS NON

*1939meaed fenjoe ue se
pasn aq fem aanpadoad ,FAISHNDHAY, B JO ameu 3yl °*saanpadoad JIATISYNOAY,
Jo ssweu 9y} a1 PpaINITISqnNs aq 03 savzamexaed Tenioe Iyl 3jou-
10 13yjaym ,TANQII0Ud, PIom 3yl £q paryroads sae saarameaed 2i1npad01g:ILON
*Xe3judg uoT3edTIIdOAdg 2anpadoad 9 - 7 aindtjg

, AN@ID0Ud, d°dsaamsuy
1 474VL,
19T JTo2dg = ad{y,
IstradL1adL]
ad{3 = IsT10d4]
(3sT12d41)PI
‘ PI = J931sweiedooag
1sTiweaedooag19ysmeaedooayg
I939meardooig = 3syruweaedooig
isTiweaedooag ,FUNQAD0¥d, oodsasmsuy . = Dadsaanpadoig

'9 = [2In3TJ UT UMOYS ST UOTIBOTITOods aanpasoiad e 103 xejuls yeIaus8 ayg

*pearnbai aq Ieys
suorledTjroads 1sjsweaed 19yjany ou ‘orduexs 3SB] 3yl ur pIaurTIdpun umoys
UOTIBDTITO2ds jJo 9497 3yl IV *(MS‘D)99D 2q pInom 997 jJo TTed T[EdTdA1 vy

luswalelg (S ,HOLIMS,
(. TEN@I0¥d, , INIIVO'LE, ¢, TAEVT,)d, TUNAIO0N,) 999 ,TINGIIO¥d,

2q uayl IYS3TW 99) JO UOTIRIBIDIP V °*D 2INITISqns 03 pazrnbax
8q Aew 3T YOTym 103 g 19l1sweaed B sey g9y ainpadoiad e eyl asoddns ‘Suriseu
Jo 1@a31 12dosp ® o3 a1duexe 3yl onsind o] °‘seumod £q peieiedss aq 3Isnum

SuoT3ledT3Idoads 9yl pue (H UL [pue T 103 sSe) pa3lTmiad 218 SuOTIBLOTITO=ds
831fsodwod ou ‘pairnbaa 91e SIITITIUIPT [PWIOI ou ‘noTiledT3Troads
Jajoweaed Jo 12A9] IdSUUT 9YI IV (9'AVI)D 29 PINOM D Jo Tied 1[ed1dLy ¥

jusmaleds ! ((, AVNYV, ,YAOTINI,
¢ J4AOIAINI, ,ANTVA, ¢, HIDIINI, , INTVA,)
d,39NaI00¥d, , OINIIVO1, ‘9, 19V,) O,TUNAAD0Ud,
2q 314y3Tm uoriedTIJToads Liessadou
2yl BurieaiIsSniIT ‘D 3JO UOTIBRIEB[ISP Yy °5 23INITISQNS O3 peainbaa aq <Lem
3T YOoTym 103 4 193°uweled [eumioy ® sey) a2anpadoad e 3Iryl asoddns asylany pue
3uawa el (V, AVIYY, (YADAINI, T, YTOFINI, ,INTVA,) D, TINAID0¥d, , ONIIVO'LL,

Se paieldap uaaq sey 9H aanpadoid e jey3l asoddng

$ATINVXE

THE PROCEDURE BODY

For purposes of scoping, a procedure declaration can be regarded as a block
at the place where it appears in the program text. Everything except the
body may be disregarded, and the formal parameters may be treated as though
declared within the body, labels included. Identifiers that are non-local to
the procedure body shall be those in scope at the place of the procedure
declaration, subject to the restriction specified at the beginning of this

Chapter. Actual parameters must be in scope at the procedure call. For
example, the block

'"BEGIN' "INTEGER' I;
'INTEGER' '"PROCEDURE'P;
'ANSWER' 1;
I:=0;
'BEGIN' 'INTEGER' I;
I:=2;
PRINT(P);
"END'
'END'

has the effect of printing zero.

CHAPTER 8

COMMUNICATORS

The separately compiled units of a program may communicate with each other
through 'COMMON' and with objects external to the program by means of the
communicators 'EXTERNAL' and 'ABSOLUTE'. In this implementation 'LIBRARY' is

used to include CORAL 66 text from a separate file and is therefore defined
in Chapter 10.

'COMMON' COMMUNICATORS

Global objects declared within a program are communicated to all separately
compiled units through a 'COMMON' communicator. This consists of a list of
'COMMON' items separated by semicolons all within round brackets following
the word 'COMMON'. Such items shall be of three kinds, corresponding to the
division of objects into data, places and procedures. A 'COMMON' data item
is a declaration of the identifiers listed within it, exactly as specified
in Chapter 3. Communication of places and procedures shall take the form of
specification, as in the equivalent parameters of a procedure declaration
(see PLACE PARAMETERS and PROCEDURE PARAMETERS). For each identifier
specified in a "COMMON' communicator there shall correspond an appropriate
declaration (or for labels, a setting) in the outermost block of one and
only one program unit. The syntax is as shown in Figure 8-1:

Commonconmunicator
Commonitemlist

'COMMON' (Commonitemlist)
Commonitem

- Commonitem;Commonitemlist
Commonitem = Datadec

Overlaydec
Placespec
Procedurespec
Void

Placespec = 'LABEL' Idlist
'SWITCH' Idlist

0

Figure 8-1. 'COMMON' Communicator Syntax.
»

The identity of each common item is determined by its overall position in
the 'COMMON' communicators when all the 'COMMON' communicators present in
the program unit are considered in the order in which they appear in the
text. Association of its identifier with the actual object requires this
position to be the same in the 'COMMON' communicators of all program units.

The use of a 'LIBRARY' file containing 'COMMON' communicators by all program
units is a means of ensuring that this is so.

'LIBRARY' COMMUNICATORS

See '"LIBRARY' CALLS in Chapter 10.

'EXTERNAL' COMMUNICATORS

Global objects defined in program units written in other languages must be
defined through an 'EXTERNAL' communicator. Places and procedures specified
in an 'EXTERNAL' communicator may also be written in CORAL 66; if present
in the outermost block of a program unit they will be identified with the
external object. VEXTERNAL' data objects must not be defined in a CORAL 66
program unit; space for them must be allocated and associated with their
names by other means.

The syntax for 'EXTERNAL' communicator is shown in Figure 8-2:

Externalcommunicator = 'EXTERNAL' (Externalitemlist)
Externalitemlist = Externalitem

Externalitem;Externalitemlist
Externalitem = Unsetdatadec

Placespec

Procedurespec

Void

Figure 8-2. 'EXTERNAL' Communicator Syntax.

Names used for external objects are subject to restrictions of length and

certain names of special significance to the assembler and 1linker may be
invalid as external names. Unsetdatadec is used syntactically oanly in the
above syntax; the communicator does not constitute a data declaration.

NOTE:External items are associated by name and there is no requirement that

external items be given in the same order in each program unit, or that
unused external names be included.

'ABSOLUTE' Communicators

CORAL 66 programs refer to an object having known addresses by the use of an
'ABSOLUTE' communicator which associate an identifier with a specification
of the 'absolute' object, including its address. The form is similar to an
external communicator with the addition of the address. The syntax is shown
in Figure 8-3:

Absolutecommunicator 'ABSOLUTE' (Absoluteitemlist)

[}

Absoluteitemlist Absoluteitem
Absoluteitem;Absoluteitemlist
Absoluteitem = Absolutedatadec
Absoluteplacespec
Absoluteprocspec
Void
Absolutedatadec = Numbertype Absoluteidlist :
Numbertype 'ARRAY' Absolutearraylist
'"TABLE' Absoluteid Tableform
Absoluteidlist = Absoluteid
Absoluteid,Absoluteidlist
Absolutearraylist = Absolutearrayitem
Absolutearrayitem,Absolutearraylist
Absolutearrayitem = Absoltueidlist[Sizelist]
Absoluteid = Id/Absoluteaddress
Absoluteaddress = Integer

Figure 8-3. 'ABSOLUTE' Communicator Syntax.
8 -2

An example of an 'ABSOLUTE' communicator is:

'ABSOLUTE' ('LABEL' RESTART/O;
'BYTE' 'ARRAY 'X/2000[10:100] ;
'"PROCEDURE 'CO/ "HEX' (F809) ('VALUE' 'BYTE'))

For an array the absolute address must be the address of the lowest byte

used; the array X in the last example occupies storage locations starting
from address 2000 (decimal) where X[10] is stored.

CHAPTER 9

NAMES AND CONSTANTS

IDENTIFIERS

Identifiers are used for naming objects of data, labels and switches,
procedures, macros and their formal parameters. An identifier consists of an
arbitrary sequence of letters and digits, starting with a letter. When
quotes are used to delimit language symbols any lower case letters are
considered equal to and indistinguishable from the corresponding upper case
letter. When language symbols are distinguished by upper case, identifiers
must not contain upper case letters. An identifier carries no information
in its form, e.g. single-letter identifiers are not reserved for special
purposes. It may be of any length up to and including 255 characters, except
that identifiers used to name external objects may be of restricted length.
As layout characters are igmored, spaces may be used in identifiers without
acting as terminators and without counting towards the length limit.

The syntax is shown in Figure 9-l:

Id = Letter
Letter Letterdigitstring

Letterdigitstring = Letter Letterdigitstring
Digit Letterdigitstring

Void
Letter = AorBorC ... 2oraorb ... &
Digit = Qorlor2or3...9

Figure 9-1. Identifier Syntax.

NUMBERS

Numerical constants specified elsewhere in this specification are of the
following types:

* Constants for presetting, optionally signed;

* Integers and reals as primaries in expressions (a sign attached to a
primary shall belong syntactically to the expression and not to the
number) ;

* Integers and signed integers used .. ucciarations or specificationms,
typicuis, ror aefining bit-fields and array bounds;
* Integers’giving addresses of 'ABSOLUTE' objects.

The syntax is shown in Figure 9-2:

Constant
Number
Signedinteger

Real

Integer

Number
Addoperator Number

Real
Integer

Integer
Addoperator Integer

Digitlist.Digitlist
Digitlist@Signedinteger
@Signedinteger
Digitlist.Digitlist@Signedinteger
'HEX' (Hex1list.Hexlist)

'OCTAL' (Octallist.Octallist)

Digitlist

'OCTAL ' (Octallist)

'HEX' (Hexlist).

'LITERAL' (Printingcharacter)

The further expansions are:
Digitlist

Hexlist

Octallist

P

Hexdigit

Octaldigit

Digit
Digit Digitlist

Hexdigit
Hexdigit Hexlist

Octaldigit
Octaldigit Octalli

Digit

A
B
C
D
E
F
0
1
2
3
4
5
6
7

Figure 9-2., Number Syntax.

LITERAL CONSTANTS

A printing character shall have an integer value equal to its ASCII code
with bit 7 (the most significant bit of an 8 bit value) set according to the
compile-time option chosen. The integer value may be referred to within the

program by the literal operator e.g.
. 'LITERAL' (a)

has an integer value uniquely representative of 'a'. The form is included
within the syntax of Integer (see NUMBERS). :

STRINGS

A string is any succession of up to 255 characters (printing or 1layout)
enclosed in double quotation marks (string quotes). Double quotation marks
required to be part of the string itself must be represented by an escape
sequence as specified above and any of the other escape sequences shown
above may be used. Further to this it is possible to interrupt the string
for the purpose of spreading it over two or more lines of program text by
ending a line with a single asterisk and continuing from an asterisk written
on a subsequent line, provided that only layout characters appear between
the closing and reopening asterisks. For example a string may be written

"THIS IS A VERY *
* LONG STRING"

A string can be classed as an unconditional expression and its value is its
location but it shall not be used as a 'LOCATION' parameter.

The internal form of a string is that of a 'BYTE''ARRAY' of one dimension
with lower bound zero. Element zero holds the (unsigned) length (0-255)
characters and element ome onwards holds the 'LITERAL' value for successive
characters of the string.

Separate copies of equivalent strings are created for each occurrence of the
string. For example in

"INTEGER' I;

I:="STRING";
'IF' I="STRING" 'THEN' Statement

the condition is false since the distinct locations of two copies of
"STRING" are compared. ‘ '

The syntax is as shown in Figre 9-3:

String = "any sequence of up to 255 characters
in which asterisk denotes an escape
sequence and in which double quote
must be represented by such an escape

sequence"

Figure 9-3. String Syntax.

CHAPTER 10

TEXT IN A PROGRAM

COMMENT

A program may be annotated by the insertion of textual matter and this
comment is ignored by the compiler.

COMMENT SENTENCES

A comment sentence consists of the word 'COMMENT' followed by
terminated by a semicolon. For obvious reasons the text must not
contain a semicolon. The entire comment sentence is ignored by the compiler.

BRACKETED COMMENT

Bracketed comment comprises any textual matter enclosed within round

brackets immediately after a semicolon of the program or wherever a
declaration or statement may appear.

The text may contain brackets provided that they are matched. Bracketed
comment (including the brackets) are ignored by the compiler.

'END' COMMENT

Annotation may be inserted after the word 'END' provided that it takes the
form of an identifier only. The 'identifier' is ignored by the compiler.

10 -1

MACRO FACILITY

A CORAL 66 compiler embodies a macroprocessor, which may be regarded as a
self-contained routine which processes the text of a CORAL 66 program before
passing it to .the compiler proper. Its function is to enable the programmer
to define and use convenient macro names, in the form of identifiers, to
stand in place of cumbersome or obscure portions of text, typically code
statements. Once a macro name has been defined, the processor expands it in
accordance with the definition wherever it is subsequently used, until the
definition is altered or cancelled. However, the macro processor treats
comments, constant character strings and the representations of numbers as
indivisible entities, and does not expand any objects with the form of
identifiers within these entities. No character that could form part of an
identifier can be written adjacent to the use of a macro name or formal
parameters of a macro, as this would inhibit the recognition of such names.
A macro defintion may be written into the source program wherever a

declaration or statement may appear and is removed from it by the action of
the macro processor.

STRING REPLACEMENT

In the simplest use a macro name stands for a definite sequence of
characters: the macro body.

EXAMPLE:
The (fictitous) code statement
'CODE' 'BEGIN' 123,45,6 'END'
might be given the name SHIFT6. The macro definition would be written
'DEFINE' SHIFT6 “'CODE''BEGIN' 123,45,6 'END'";

The expansion, or body, can be any sequence of up to 255 characters in which

the rules of strings apply. For example, an asterisk within the body must
be written as the asterisk asterisk escape sequence

PARAMETERS OF MACROS

A macro may have parameters, as in the following example:
'DEFINE' SHIFT (N) "“CODE''BEGIN' 123,45,N 'END'";

Subsequent occurrences of SHIFT(6) would be expanded to the code statement
in the STRING REPLACEMENT example. A formal parameter, such as N above, is
written as an identifier. An actual parameter (e.g. 6) is any string of
characters in which string quotes are matched, all round and square brackets
are nested and matched, and all occurences of a comma lie between round or
square brackets. This requirement enables commas to be used for separating
actual parameters. The number of actual parameters must be the same as the
number of formals, which must also be separated by commas.

10 - 2

NESTING OF MACROS

A macro definition may embody definitions or uses of other macros. When
a macro is defined the body is kept but not expanded. When the macro is
used it is as though the body were substituted into the program text,
and it is during this substitution that any other macros encountered are
processed. The use of a macro with parameters can be regarded as
introducing virtual macro definitions for the formal parameters before
the macro body is substituted. Thus, to continue from the previous
example, the occurence of SHIFT(6) would be equivalent to

'DEFINE' N "6";
'CODE' 'BEGIN' 123,45,N 'END'

followed immediately by deletion of the virtual macro N.

Throughout the scope of the macro SHIFT, the formal parameter N must not
be defined as a macro name. A formal parameter cannot be used in any
inner nested macro definition; neither in its body nor as a macro name
-nor as a formal parameter. Furthermore no identifier in an actual

parameter string, or 1its subsequent expansions, can be the same as any
formal parameter of the calling macro.

DELETION AND REDEFINITION OF MACROS

The scope of a macro definition is from the point of definition until
either the end of the program text 1is reached or the macro name is
redefined or deleted. The scope of a macro is independent of the block
structure of the program. To delete a macro the construct

'DELETE' Macroname;

is given wherever the requirements of this standard allow a declaration
or statement to appear.

The 'DELETE' construct is removed by the action of the macro processor.
Alternatively, a macro name may be redefined. Macro definitions that
have the same name are stacked and so processed that the most recent
definition is deleted, and the previous one reinstated.

NOTE: 'Recent' and 'previous' refer to the sequence as processed by the
Macro processor.

10 - 3

SYNTAX OF COMMENT AND MACROS

The syntax is shown in Figure 10-1:

Commentsentence

Bracketedcomment

Endcomment

croname
Macrocall

Macrostringlist

Macrostring

'"COMMENT' any sequence of
characters not including a

semicolon;

(any sequence of characters in

which round brackets are matched)

Id

Macroname

Macroname (Macrostringlist)
Macrostring
Macrostring,Macrostringlist

any sequence of up to 255
characters in which commas

are protected by round or square
brackets and in which such
brackets are properly matched
and nested

Figure 10-1. Syntax of Comment and Macros.

10 - 4

10 -5

APPENDIX A

SYNTAX RULES

Some recourse to plain English occurs in the ‘syntax rules and is

underlined to avoid any possible confusion with formal class names and
terminal symbols.

Figure
Rule eference
Absoluteaddress = Integer 8-3
Absolutearrayitem = Absoluteidlist [Sizelist] 8-3
Absolutearraylist = Absolutearrayitem 8-3
Absolutearrayitem, Absolutearraylist
Absolutecommunicator = 'ABSOLUTE' (Absoluteitemlist) 8-3
Absoluteitemlist = Absoluteitem 8-3
Absoluteitem;Absoluteitemlist
Absoluteitem = Absolutedatadec 8-3
Absoluteplacespec
Absoluteprocspec
Void

Absolutedatadec = Numbertype Absoluteidlist 8-3

Numbertype 'ARRAY' Absolutearraylist
'TABLE' Absoluteid Tableform

Absoluteid = Id/Absoluteaddress 8-3
Absoluteidlist = Absoluteid 8-3
Absoluteid, Absoluteidlist
Actual = Expression 6-4
Reference
Destination
Name
Actuallist = Actual 6-4
Actual,Actuallist
Addopérator = o+ 5-2
Alternative = Statement 6-9
Answerspec = Numbertype 7-2
Void

Answerstatement
Arraydec
Arrayitenm

Arraylist

Assignmentstatement

Assignmentsymbol

Base

Bitposition

Bitseparator

Block

Booleanword

Booleanword2

Bracketedcomment

Byteposition

Codesequence

=

'ANSWER' Expression
Unsetarraydec Presetlist
Idlist [Sizelist]

Arrayitem
Arrayitem,Arraylist

Variable Assignmentsymbol Expression

Id
Id [Signedinteger]

$400%

Integer

'BIT'

'BEGIN' Declist;Statementlist "END'

Booleanword2
Booleanword4 'DIFFER' Booleamword 5

Booleanword3
BooleanwordS 'UNION' Booleanword6

(any_sequence of characters in which
round brackets are matched)

Signedinteger

assembler instructions in which

%name refers to CORAL defined name

3-4

3-4

2-1

Codestatenent

Commentsentence

Commoncommunicator

Commonitem

Commonitemlist

Communicator

Communicatorlist

Comparator

'CODE' 'BEGIN' Codesequence 'END'

'COMMENT' any sequence of characters

not including semicolon;

'COMMON' (Commonitemlist)

Datadec
Overlaydec
Placespec
Procedurespec
Void

Commonitem
Commonitem;Commonitemlist

Commoncommunicator
Absolutecommunicator
Externalcommunicator
Void

Communicator
Communicator;Communicatorlist

AVVANA

Compoundstatement

Condition

Conditionalexpression

Conditionalstatenent

Conditionalstatement2

Consequence

Consequence2

Constant

n

'BEGIN' Statementlist "END'

Condition 'OR' Subcondition
Subcondition

'IF' Condition 'THEN' Expression
'ELSE' Expression

'IF' Condition 'THEN' Consequence

'IF' Condition 'THEN' Consequence2
'ELSE' Alternative

Statement

Simplestatement
Label:Consequence2

Number
Addoperator Number

6-6

10-1

8-1

8-1

8-1

5-10

5-10
6-1

5-10

6-1

6-1

6-9

6-9

Constantlist = Group 3-2
Group, Counstantlist

Datadec = Numberdec 2-1
Arraydec
Tabledec

Dec = Datadec 2-1
Overlaydec
Switchdec
Proceduredec

Declist = Dec 2=1
Dec; Declist

Destination = Label 6-4
Switch[Index]

Digit = Qorlor2or3...9 9-1
Digitlist = Digit 9-2
Digit Digitlist
Dimension = Lowerbound:Upperbound 3=2
Dummystatement = Void 6~-1
Elementdec = Id Numbertype Byteposition 3-3

Id Partwordtype Byteposition
Bitseparator Bitposition
Elementdeclist = Eleméntdec
Elementdec; Elementdeclist
Elementpresetlist = 'PRESET' Comstantlist 3-3
Void
Elementscale = (Totalbits) 3-6
Endcomment = 1d 10-1
Expression = Unconditionalexpression 5-1
Conditionalexpression
External communicator = 'EXTERNAL' (Externalitemlist) 8-2
Externalitenm = Unsetdatadec 8-2
Placespec
Procedurespec
Void
Externalitemlist = Externalitem 8-2
Externalitem;Externalitemlist
Factor = Primary 5-3
Booleanword

A-4

Forelement

Forlist

Forstatement

Gotostatement

Group

Hexdigit

Hexlist

Id

Idlist

Index

Integer

Label

Labellist

Length

Letter

Expression

Expression 'WHILE' Condition

Expression 'STEP' Expression
'UNTIL' Expression

Forelement
Forelement,Forlist

'"FOR' Reference Assignmentsymbol
Forlist 'DO' Statement

'GOTO' Destination
Constantlist

(Constantlist)
Void

Hexdigit
Hexdigit Hexlist

Letter Letterdigitstring

Id
Id, Idlist

Expression

Digitlist
'OCTAL' (Octallist)
'HEX' (Hexlist)

'LITERAL' (

intingcharacter)

Id

Label
Label,Labellist

Integer

AorBorC ... Zoraorb.,. z

6-10

6-10

6-10

6-3

9-2

Letterdigitstring

Lowerbound

Macrobody

Macrocall

Macrodefintion

Macrodeflist

Macrodef

Macrodeletion
Macroname

Macronamelist

Macrostring

Macrostringlist

Multoperator

Name

Number

Numberdec

Numbertype

Letter Letterdigitstring
Digit Letterdigitstring
Void

Signedinteger
String

Macroname
Macroname (Macrostringlist)

'DEFINE' Macrodeflist

Macrodef
Macrodef, Macrodeflist

Macroname Macrobody
Macroname (Idlist) Macrobody

'DELETE' Macronamelist

1d

Macroname
Macroname, Macronamelist

any sequence of up to 255 characters

in which commas are protected by

round or square brackets and in
which such brackets are properly

matched and nested

Macrostring
Macrostring, Macrostringlist

*

/

Id

Real
Integer

Unsetnumberdec Presetlist

'"FLOATING'
'INTEGER'

10-1
10-1

10-1
10-1

10-1

10-1
10-1

10-1

10-1

10-1

Octaldigit

Octallist
Overlaydec
Parameterspec
Parameterspeclist

Partprimary
Partreference

Partwordtype
Placespec
Presetlist
Primary
Procedurecall

Proceduredec

Procedureheading

Procedurespec

Procparameter

1]

NOUVPWN MO

Octaldigit
Octaldigit Octallist

'OVERLAY' Base 'WITH' Unsetdatadec

Specifier Idlist
Tablespec
Procedurespec

Parameterspec
Parameterspec; Parameterspeclist

Id[Index]
'BITS' [Totalbits, Bitposition]
Typedprimary

Id[Index]

'BITS' [Totalbits, Bitposition]
Reference

Elementscale
'UNSIGNED' Elementscale

'LABEL' Idlist
"SWITCH' Idlist

Constantlist
Void

Untypedprimary
Typedprimary

Id
Id(Actuallist)

Answerspec 'PROCEDURE'
Procedureheading; Statement

Answerspec 'RECURSIVE'

Procedureheading; Statement

Id
Id (parameterspeclist)

Answerspec 'PROCEDURE' Procparamlist

Id
Id (Typelist)

9-2

7-3

5-5

3-4

8-1

3-7

6-4

7-1

A-7

Procparamlist

Programunit

Real

Reference

Procparameter
Procparameter, Procparamlist

'CORAL' Id Communicatorlist Block
'FINISH'

Digitlist.Digitlist
Digitlist@Signedinteger
Digitlist.Digitlist@Signedinteger
'HEX' (Hexlist .Hexlist)

'OCTAL' (Octallist.Octallist)

Id

Id [Index]

Id [Index,Index]
[Index]

Signedinteger

Simpleexpreésibn

Simplestatement

Sizelist

Specifier

forstatement

Integer
Addoperator Integer

Term
Addoperator Term
Simpleexpression Addoperator Term

Assignmentstatement
Gotostatement
Procedurecall
Answerstatement
Codestatement
Compoundstatement
Block
Dummystatement

4

Dimension
Dimension,Dimension

'VALUE' Numbertype
'LOCATION' Numbertype
Numbertype 'ARRAY'
'"LABEL'

'SWITCH'

7-6

9-2

5-6

3-2

7-4

Statement =
Statementlist =
String =
Subcondition =
Switch =
Switchdec =
Tabledec =
Tableform =
Tablespec =
Term =
Totalbits =
Type =
Typedprimary =
Typelist =

Unconditionalexpression=

Label:Statement
Simplestatement
Conditionalstatement

Statement
Statement; Statementlist

"any sequence of zero to 255

characters in which asterisk -

denotes an escape seguence
and in which double quote
must be represented by such
an escape sequence"

Subcondition 'AND' Comparison
Comparison

Id

'SWITCH' Switch Assignmentsymbol
Labellist

'TABLE' 1Id Tableform Presetlist
'TABLE' Id [Width,Length]

6-1

9-3
and
10-1

5-10

4-1

4-1

3-3

[Elementdeclist Elementpresetlist]

[Width,Length] [Elementdeclist]
'"TABLE' Id Tableform

Factor
Term Multoperator Factor

Integer

Specifier
'TABLE'

Answerspec 'PROCEDURE'

Reference
Partprimary
'LOCATION' (Reference)

Numbertype(Expression)
Procedurecall
Integer

Type
Type,Typelist

Simpleexpression
String

3-3

Unsetdatadec

Unsetnumberdec
Unsetarraydec

Untypedprimary

Upperbound

Variable

Width

Unsetnumberdec
Unsetarraydec

Tablespec

Numbertype 1Idlist

Numbertype 'ARRAY' Arraylist

Real
(Expression)

Signedinteger

Reference
Partreference

Integer

241

3-2

5-4

3-2

6-2

3-3

A-10

APPENDIX B

PROCEDURE PARAMETERS

Object

Formal Specification

Actual Parameter

Numerical value
Location of data
Name of array
Nawme of table
Place in program
Name of switch

Name of procedure

'"VALUE' Numbertype Id1
'LOCATION' Numbertype Id
Numbertype 'ARRAY' Id

1

Tablespec2
'LABLE' Id
'SWITCH' Id

Procedurespec3

1
1

Expression
Reference
Id

Id
Destination
Id

Id

l_ Composite specification has Idlist in place of Id
- See TABLE PARAMETERS in Chapter 7
- See PROCEDURE PARAMETERS in Chapter 7

1-€ JIA9TINT,
6-¢ +HLIM, 1-9 pue g=¢ 241,
01-9 +ATIHM, =6 1 X3H,
'7—[] 'EIﬂ'IVA. €-9 ‘OLOS|
01-9 s TIINA, 01-9 1304,
9-€ + QANOISNA, 1-€ +ONIIVO1a,
€-S s NOINN, -1 +HSINII,
1-9 pue 6-¢ +NIHL, -8 s TYNYE IXH,
9~[Pue G-/ ‘g-¢ JITEVL, 9-9 pue 1-g L ONI,
1-8 PUB =/ ‘-4 +HOLIMS, 1-9 pue g-¢ 38714,
01-9 1 JILS, 01-9 104,
8-S £=s JJIIIIdA,
8=-c =01 A1IT13Q,
11-9 v -1=01 y INIJIA,
I-L F I-I .'IVHOD.
=L ANAID0U4, -8
€-€ +1ASTEd, 1-01
6-¢ 1 AV IAQ, 9-9
01-¢ 1 30, -t
=6 Z=-9 pue 9-¢
< —-€
£=-C 9-9 pue [-9 ‘I-Z
%=/ pue ¢-¢ 1 NOILVOO0T, %=/ pue Z-¢
¢=6 ' 'IVHELI.I"I. 1-9
=01 » XAVELI, 01-¢
1-8 pue 4=/ 139V, £-8 » 3107059V,
Toquig Toquig
?aand1g a3en8ueq aan3tyg a8enSue]

STO9HAS FOVNONVI

O XIONEddV

. APPENDIX D

CHARACTER SET

Character Description and Chapter Reference
012345672829 digits, 9

8 ... 2 letters, 9

A e e Z

+ - adding operators, 5

* / multiplying operators, 5

* in escape sequences, 9

A
@

]
Y
A4
A
\Y4

comparators, 5

() expression brackets, 5

bracketed comments, 10

[] index brackets, 3 and 4
table characters, 3

string quotes, 9 and 10

s 3 ' comma semicolon,separators for lists

: colon separator for bounds, 3

terminator for label setting, 6

= <= assignment symbol, 3, 4 and 6

. point, 9

@ 'times ten to the power of', 9

binary octal and hexadecimal numbers, 9
Z

trip character in code statements, 6

Language symbol quotes, 1

APPENDIX E

CORAL 66 CONSTRAINTS

Variable and procedure names may be of any length, but only the first
255 alphanumeric characters are significant. :

The maximum size of a macro definition is 255 characters.
The maximum number of arguments any procedure can have is 255.

The maximum size of arguments a procedure can have is 255 bytes, and a
recursive procedure 245.

The maximum size of arguments and local variables a recursive procedure
can have is 255,

The maximum number of procedures that can be declared in any one

segment is 100. Common and Absolute definitions of procedures are
excluded from this figure. '

Iwo dimensional arrays in ABSOLUTE and in EXTERNAL are allowed, but not
supported.

APPENDIX F
SUMMARY OF IMPLEMENTATION SPECIFIC FEATURES

MAJOR FEATURES DEFINED AS OPTIONAL BY BRITISH STANDARD

'RECURSIVE' procedures

'"RECURSIVE' procedures are implemented with the one restfiction
described in 3.7.1(b). ,

'"TABLE' facilities

'"TABLE' is implemented except that partword table elements may not
contain fractional parts.

'"FIXED' and 'FLOATING' point numbers

'FIXED' point numbers are not implemented. 'FLOATING' point numbers are
implemented with some user choice of format and size.

NOTE: The 8080 compiler is optionally supplied without 'FLOATING'

point, and that 'FLOATING' point may also be suppressed by a
compile-time option.

'OVERLAY' of data

'OVERLAY' is implemented except that no presetting is allowed in an
overlay declaration.

'BITS'

'BITS' is implemented, and extended to operate on 'BYTE' data.

Set of dyadic logical operators

'DIFFER', 'UNION' and 'MASK'

These operators are implemented and are extended to operate om 'BYTE'
data.

The communicators 'COMMON', 'LIBRARY', 'EXTERNAL' and 'ABSOLUTE'

'COMMON', 'ABSOLUTE' and 'EXTERNAL' are implemented for communication

between CORAL modules, and between CORAL modules and objects defingd in
* other languages. ‘ '

'LIBRARY' is used for source statement inclusion.

'CODE' Statements

'CODE' statements may not possess a value in the way suggested by 6.6.6 of
the British Standard. 'CODE' statements consist of assembler source lines

for the appropriate computer and CORAL defined objects and constants may be
referred to by %Zname or Znumber.

NON STANDARD PROCEDURE PARAMETER FEATURES

These facilities, described in 6.7.4.10 of the British Standard, applicable
to 'FIXED' numbers, are not implemented.

EXTENSIONS TO STANDARD 'CORAL'

¢)

All of the following represent extensions to the British Standard:

* The 'RETURN' statement. (Chapter 6)

* The number type 'BYTE'. (Chapter 3)

* ' The operators 'SRL' and 'SLL'. (Chapter 5)

* The operator 'MOD'. (Chapter 5)

* Expressions compared in conditions may be themselves conditional
expressions. (Chapter 5) ~

* Procedures may call other procedures declared at the same block
irrespective of their order of declaration and irrespective of
their inclusion in communicators. (Chapter 7)

* Data in inner blocks of a program, inner blocks of a procedure
body and within the body of a 'RECURSIVE' procedure may be preset.
(Chaper 3)

% Integer numbers may be written in four additional notations to
those specified in the British Standard. (Chapter 9)

* Facilities for including layout characters in literal constants
and strings. (Chapter 9)

* The rules for comment sentences are more liberal than the
standard, comment sentences being allowed at any symbol or name in
the program text. The rules for bracketed comments are also
slightly more liberal than the standard. (Chapter 10)

*

A list of macros may be defined or deleted in a single 'DEFINE' or
'DELETE' (Chapter 10)

)

\(‘I

5»/\~

ADDRESSING

Addressing is appropriate to byte-addressed computers. Consecutive 'BYTE'

- data have addresses in

ascending order differing by one while consecutive
'INTEGER' data have addresses in ascending order differing by two. Values

taken by the 'LOCATION' operator and 'LOCATION' parameters are machine
addresses, '

	1
	2
	3
	4

