
www.ComputingHistory.org.uk

A Beginners’ Guide to
Raspberry Pi

www.ComputingHistory.org.uk

Features
● It is a low-cost, credit-card sized computer

developed in the UK by the Raspberry Pi
Foundation.

● It has been designed with education in mind to
enable people of all ages to explore computing.

● It has the ability to connect to the Internet, a
high definition screen, a keyboard, a mouse, USB
disk drives and even has individual input and output pins that can be connected to lights, motors
and switches (and more).

● It uses an operating system called ‘Linux’ which is free and open-source software.

● It comes equipped with three programming languages - Scratch, Python and Java.

A Bit of History

The Raspberry Pi uses an ARM processor. The ARM processor is used in most
mobile phones and a vast number of other mobile devices, hard drives, digital
cameras and televisions. ARM is a British company whose roots can be traced
directly back to Acorn - the company that produced the BBC Microcomputer used in
schools across the country back in the 80s. Acorn was based in Cambridge and ARM
is still in Cambridge today.

The museum has Serial Number 7 Raspberry Pi (Model B+) and Serial Number 3 Raspberry Pi2 in its
collection.

What can you do with it?

WHAT IS THE RASPBERRY PI?

Make music

Control little light bulbs and
switches, and even create
moving robots!

Play games/build games

www.ComputingHistory.org.uk

Raspbian is the Raspberry Pi Foundation’s official supported operating system.

The Raspberry Pi, even though a computer, does not have a hard disk to store information. Instead, it
relies on an SD card with the operating system and other programs installed on it.

We, therefore, need an SD card that the PI can ‘boot’ from. SD Cards are very
common and you may even have a spare one left hanging around
somewhere. They are commonly used in digital cameras and media players.

You have TWO options for the SD card :

Option 1 - Create your own card

You can download the current software from here onto your computer:

http://www.raspberrypi.org/downloads

Click on NOOBS (New Out Of the Box Software).
NOOBS installation contains Raspbian. Download
the ‘NOOBS’ .ZIP file onto your computer.

The next step is to transfer the NOOBS unzipped
folder onto an SD card that will go into the Pi.

Before transferring the folder, however, you will need to format the SD card. For this, you will need to
download the SD Card formatter tool from here :

https://www.sdcard.org/downloads/formatter_4/

Install the formatter tool on your PC, run it and follow the on-screen guide to format your SD card. We
HIGHLY recommend that you use an 8 GB (or larger) card. A 4 GB card whilst technically suitable will
make installing the software much more difficult.

Option 2 - Buy a ready formatted card

Much easier! It will save you an hour of downloading and fiddling about.

You can buy them from many online websites like Pimoroni and The Pi Hut.

The EASY way !!

DOWNLOADING THE SOFTWARE

www.ComputingHistory.org.uk

Now we have the SD card ready we can start putting together a working system.

We’ll need :

· A Raspberry Pi (Obviously!)
· An SD Card (The one with the operating system installed)
· A Micro USB Power Adaptor
· A USB Keyboard
· A USB Mouse
· A Monitor
· A Monitor Cable

Few things to note:

The Power Adaptor

The Raspberry Pi uses a standard 5V adaptor with a micro USB plug. They
should cost about £7. Be wary of very cheap imported £1.99 power adaptors on
eBay.

The Keyboard and Mouse

Most USB keyboards and mice will work fine, but note
that older PS2 keyboards and mice will not work
(unless you have an adaptor). The Raspberry Pi2 and
Pi3 have four USB ports, and you can plug in your
mouse and keyboard to any two of these ports. There’ll be spare sockets to plug in a USB hard disk,
Bluetooth adaptor or Wi-Fi dongle [NOTE: Pi3 has in-built WiFi and Bluetooth]. If you want more USB
sockets, you can also buy a USB hub.

The Monitor

The Raspberry Pi needs an HDMI or DVI monitor. You just have to make
sure you buy the correct cable to connect it to your Pi.

If your monitor has an HDMI input then use an HDMI to HDMI cable.

 If your monitor has a DVI input then use an HDMI to DVI cable.

The Raspberry Pi can also work with TVs with a composite video input, but this
is not a very good quality picture and not recommended for programming.

The Raspberry Pi will not work with a VGA monitor unless you buy an adaptor.
You can buy an active adaptor for about £15 - £20 that will work, but beware of the cheap £5 passive
adaptors - they will not work.

O PPS/2 USB

LET’S GET THIS PARTY STARTED…

www.ComputingHistory.org.uk

Connecting up the Raspberry Pi is pretty straight forward:
● Connect the HDMI to DVI or HDMI to HDMI cable to the monitor: HDMI end plugs into the Pi;
● Connect the monitor power cable to the monitor;
● Insert the SD card into the Pi;
● Plug in the power adaptor into the micro USB socket on the Pi;
● Plug in the monitor and Pi power cables into the mains.

Switch the Raspberry Pi and the monitor on. The Raspberry Pi does not have a power switch so you’ll
have to plug in and unplug the power adaptor to turn it on and off.

After some booting up text, you should be
faced with the screen shown here on the
right.

Tick the Raspbian and click the install icon.

Simply agree to all the prompts!

Hang around for a bit ... installation will
take a good 20 minutes.

Once the installation is complete you can
click on OK and the Raspberry Pi will re-
boot.

Raspbian is a variation (also known as a flavour or a distribution) of Linux. It is a special distribution
designed to run on the Raspberry Pi.

Linux is a UNIX like operating system that is free and open-source.

The recent Raspbian installations have removed the need for the user to interact at all with the UNIX
‘shell’.

PLUGGING IN THE PI!

www.ComputingHistory.org.uk

With the old Raspbian installation, you’ll see lots
of text scroll down the screen when the Pi re-
boots and then you’ll be straight to the GUI.

With the new Raspbian installation, you will
be taken to the PIXEL desktop.

Hey ... it’s a bit like Windows!

Yes! Yes it is ...

Move your mouse, point at things and click on them and great stuff happens!

You can work with two programming languages that the standard Raspbian installation comes with:

Note : The Raspberry Pi, although very powerful for its size, is not as powerful as your desktop
computer. When you click on something, be patient, it will load in a few seconds. Some programs and
operations take longer to operate than others.

Useful Hint : When you double click on an icon watch the CPU activity meter on the top right-hand
corner.

BOOTING UP

www.ComputingHistory.org.uk

A GREAT feature of the NOOBS distribution is the recovery
feature.

If the installation does not go according to plan, you can
simply hold down the shift key at boot up and it will take
you to the installation page where you can start all over
again.

Very useful!
BUT ... IT DOES DELETE ALL DATA

DISASTER RECOVERY

www.ComputingHistory.org.uk

PARTS OF THE PI

www.ComputingHistory.org.uk

SCRATCH AND PI
Scratch is a visual programming tool that allows you to
learn basic programming skills without having to type in
any code. You can create games, animations, and even
control external objects (like LEDs, switches, etc.) using
just a drag-and-drop interface.

Open the applications menu (Menu button) and
select Programming

 Click on Scratch

After a few seconds the Scratch interface will load and can start creating your first program…

Script
Area

Block
Palette

Stage

Sprites
Area

www.ComputingHistory.org.uk

Say Hello to Scratch the Cat!

Scratch the Cat is an example of a sprite. Sprites are objects that your
program can control - you can make the sprite move, you can make it say
things, you can change the way it looks, etc.

If you don’t like cats, you can choose another sprite from the Sprite
Gallery or create your own!

Hello World!

Let’s write a program or a Script, as they call it in
Scratch. The first thing we can do is get Scratch the
Cat to say “Hello World”.

To do this…

We need a Green flag to start the script. Click on the
CONTROL tab in the BLOCK PALETTE and drag a
when Green flag clicked block on to the Script area.

Choose a sprite from
the Sprite Gallery

Paint a new sprite

LET’S SCRATCH!

www.ComputingHistory.org.uk

Now, click on the LOOKS tab in the BLOCK PALETTE
and drag a say block to the Script area.

Attach the say block to when Green flag clicked
block.

In the say block, change the text to ‘Hello World!’.

Now click on Green flag (top right-
hand corner) and Scratch the cat
should say ‘Hello World!’.

LET’S SCRATCH

Click in the white box
to change the text.

Green Flag

www.ComputingHistory.org.uk

Let’s talk Electronics…

Lights, switches, motors, etc. connected to a Pi are EXTERNAL
CONNECTIONS.

To ‘talk to’ EXTERNAL objects, we need to use the PINS you can see on the
Pi. These are called IO PINS (where IO stands for INPUT/OUTPUT).

IO PINS

GPIO #/
BCM # Name Pin # Pin # Name GPIO

#/BCM #

3.3V DC
Power 1 2 5V DC

Power

2
GPIO 2
SDA1
(I2C)

3 4 5V DC
Power

3 GPIO 3
SCL1 (I2C) 5 6 GND

(Ground)

4 GPIO 4
GPCLK0 7 8

GPIO 14
TxD

(UART)
14

GND
(Ground) 9 10

GPIO 15
RxD

(UART)
15

17 GPIO 17 11 12
GPIO 18
PCM_CL
K/PWM0

18

27 GPIO 27 13 14 GND
(Ground)

22 GPIO 22 15 16 GPIO 23 23

3.3V DC
Power 17 18 GPIO 24 24

10
GPIO 10

MOSI
(SPI)

19 20 GND
(Ground)

9
GPIO 9
MISO
(SPI)

21 22 GPIO 25 25

11 GPIO 11
SCLK (SPI) 23 24 GPIO 8

CE0 (SPI) 8

GND
(Ground) 25 26 GPIO 7

CE1 (SPI) 7

GPIO 0
ID_SD 27 28 GPIO 1

SCL0

5 GPIO 5
GPCLK1 29 30 GND

(Ground)

6 GPIO 6
GPCLK2 31 32 GPIO 12

PWM0 12

13 GPIO 13
PWM1 33 34 GND

(Ground)

19
GPIO 19

PCM_FS/P
WM1

35 36 GPIO 16 16

26 GPIO 26 37 38
GPIO 20
PCM_D

IN
20

GND
(Ground) 39 40

GPIO 21
PCM_DO

UT
21

Map of the group of IO Pins

There are 40 pins in this group:
● 20 on the outside - even numbered

pins (e.g., 2, 4, 6, 8, …)
● 20 on the inside - odd numbered pins

(e.g., 1, 3, 5, 7, …)

Each pin has a function; some are POWER
pins, some are GROUND pins and some are
GENERAL PURPOSE INPUT OUTPUT (or GPIO)
pins.

In the map:
● Pin# - Pin number
● Name - Pin name or function
● GPIO#/BCM# - GPIO number or BCM

(Broadcom) number(e.g., Pin number
10 is GPIO 15)

CONTROLLING THE REAL WORLD

www.ComputingHistory.org.uk

What does the gPiO box do?

● CONTROL BOX to be used with the Pi

● Helps you to connect external components:

 LEDs, switches, sensors, buzzers…

● You can create amazing projects!

What are Inputs and Outputs?

The gPiO box has PINS or PORTS called INPUTS and
OUTPUTS.

INPUTS let you connect components that send
information to the computer.

● Examples: switches, sensors, etc.

● Four inputs on the gPiO box: A, B, C, D

OUTPUTS let you connect components that receive
data from the computer and can be turned ON or
OFF based on this.

● Examples: LEDs, buzzers, motors, etc.

● Six outputs on the gPiO box: 1, 2, 3, 4, 5, 6

How do you connect the Pi and gPiO box?

Using a ribbon cable, as is shown in the picture.

The ribbon cable connects the GPIO pins on the Pi
to the different components on the gPiO box.

PI AND THE gPiO BOX

Outputs
Inputs

Ribbon Cable

www.ComputingHistory.org.uk

Which pins on the Pi do we use?

Scratch and gPiO box
In order to ‘talk’ to the GPIO pins on the Pi using Scratch, we will need to run the Scratch GPIO server.

To do this:

● Click on File and then New
to start a new script;

● Click on Edit and then
Start GPIO server;

You’re ready to program the gPiO
box!

We are going to start by controlling one output…

Function GPIO PINS (on Raspberry Pi) gPiO box Ports

OUTPUTS
Controls the gPiO box LEDs
or you can connect external
LEDs, buzzers, etc.

17 1
18 2
27 3
22 4
23 5
24 6

INPUTS
Send an input signal to the Pi
using the push buttons on
the gPiO box or you can con-
nect external switches, sen-
sors, etc.

4 A

14 B

15 C

25 D

PI AND THE gPiO BOX: CONTROLLING OBJECTS

www.ComputingHistory.org.uk

To flash one of the LEDs on the gPiO box, we need to:

· Use a Green Flag to start your script:

q Use the Scratch block: when Green flag clicked [under the CONTROL tab].

· Configure the Raspberry Pi GPIO pin:

q Tell the Pi we are using the pin as an Output pin.

Use the Scratch block: broadcast [under the CONTROL tab].

Use the code: config[PinNumber]out.

q Example: Output 1 on the gPiO box is connected to GPIO Pin 17 of
the Raspberry Pi. So, we need to configure PinNumber 17. The
code then becomes: config17out.

· Turn the pin ON:

q This will switch on the LED connected to the pin.

Again, use the Scratch block: broadcast.

Use the code: gpio[PinNumber]on.

q Example: To switch on the LED on output 1 of the gPiO box which is
connected to GPIO Pin 17 of the Raspberry Pi, we use the code:
gpio17on.

· Wait for some time

q We need to wait for some time so that we can see the LED switched on.

Use the Scratch block: wait [under the CONTROL tab].

q Example: Let us wait for 1 second.

· Turn the pin OFF:

q This will switch off the LED connected to the pin.

Again, use the Scratch block: broadcast.

Use the code: gpio[PinNumber]off.

q Example: To switch off the LED on output 1 of the gPiO box which is
connected to GPIO Pin 17 of the Raspberry Pi, we use the code:
gpio17off.

· Again, wait for some time

q We need to wait for some time so that we can see the LED switched off.

Use the Scratch block: wait

q Example: Let us wait for 1 second.

CONTROLLING OUTPUTS

www.ComputingHistory.org.uk

CONTROLLING OUTPUTS
The complete script to flash the output 1 LED on the gPiO box looks like this:

CAN YOU TRY THESE?

● Can you make the output 1 LED flash on and off continuously?

● Write a script to flash output 2 LED on the gPiO box on for 2 seconds and off for 1 second.

● HINT: GPIO Pin 18 on the Raspberry Pi is connected to the output 2 LED on the gPiO box.

● Now, switch on output 1, output 3, and output 6 LEDs on at the same time for 2 seconds and
then off at the same time.

● HINT: Look at the little note card stuck on your table to find out which Raspberry Pi pin is
connected to which output of the gPiO box.

● Finally, do this:

● Switch on output 2 LED.

● Switch on output 3 LED after 3 seconds.

● Switch off output 2 and output 3 LEDs after 1 second.

● Make this sequence happen 3 times.

www.ComputingHistory.org.uk

Let’s now read an input , i.e., read the status of the push buttons on the gPiO box.

First, we need to write a new script. To do this:

● Click on File and then New to start a new script;

● Click Yes if asked to save the current project;

● Give your old script a name and click OK. This should close your old script and open a new
empty script;

● Click on Edit and then Start GPIO server;

For this exercise, we will make the output LED flash only when a push button is pressed. To do this:

· Use a Green Flag to start your script:

Use the Scratch block: when Green flag clicked [under the CONTROL tab].

· Configure a Raspberry Pi GPIO pin as an Input pin:

Use the Scratch block: broadcast (found under the CONTROL tab).

Use the code: config[PinNumber]in.

q Example: Input A on the gPiO box is connected to GPIO Pin 4 of the
Raspberry Pi. So, we need to configure PinNumber 4. The code then
becomes: config4in.

· Configure another Raspberry Pi GPIO pin as an Output pin:

Use the Scratch block: broadcast (found under the CONTROL tab).

Use the code: config[PinNumber]out.

q Example: Output 1 on the gPiO box is connected to GPIO Pin 17 of
the Raspberry Pi. So, we need to configure PinNumber 17. The
code then becomes: config17out.

Click on the green flag and run your program once so that all the required pins are configured.
This is particularly important in order for Scratch GPIO to read the status of the input pins.

Click on the
Green Flag

SENSING INPUTS

www.ComputingHistory.org.uk

SENSING INPUTS
Continuing the script….

· Check whether the input button has been pressed or not:

q Use the Scratch block: if-else[under the CONTROL tab]. [The if-else block
tests a condition and if true, then the instructions that are placed within
the if block are run else the instructions placed in the else block are
run].

q Input a condition in the if block by using the = block [under the OPERATORS tab].

q Fill the blank spaces in the = block with the condition we want to test.

q Example: To test whether Input A push button has been pressed, we need to check whether
the value of GPIO Pin 4 is ‘1’.

q Use the Scratch block: ‘slider’ sensor value [under SENSING tab].

q Place the ‘slider’ sensor value block in the left-hand blank space of the = block.

q Change the value from ‘slider’ to ‘gpio4’. [This option should be
available if you click on the drop-down arrow in the box.]

q Type in the value ‘1’ in the right-hand blank space of the = block.

· If the value of GPIO Pin 4 is high or 1, then switch the LED next to
output 1 on:

q Use the Scratch block: broadcast [under the CONTROL tab] as shown.

Use the code: gpio[PinNumber]on.

Example: To switch on the LED on output 1 of the gPiO box which is connected to GPIO Pin
17 of the Raspberry Pi, we use the code: gpio17on.

· If the value of GPIO Pin 4 is low or 0, then switch the LED
next to output 1 off:

Use the Scratch block: broadcast (found under the
CONTROL tab).

Use the code: gpio[PinNumber]off.

q Example: To switch off the LED on output 1 of the gPiO
box which is connected to GPIO Pin 17 of the
Raspberry Pi, we use the code: gpio17off.

When you run the script by clicking on the green flag, the LED next to output
1 will come on when you press the button next to Input A.

Don’t forget to add
the ‘forever’ block

www.ComputingHistory.org.uk

Let us start by connecting the red LED to output 1 of the gPiO box.

Each of the output pins on the gPiO box has a red ‘slot’ and a black ‘slot’.

The LED has a red wire and a black wire connected to it (as do most electrical components).

Insert the ends of the wires coming out from the LED into the given banana plugs (each banana plug
takes one wire).

Now, connect the LED to output 1 of the
gPiO box.

Now, run this script again:

The red LED should come on for 1 second and then go off.

Red wire goes
into these slots

Black wire goes
into these slots

Make sure you connect the banana plug with the red (positive) wire
inserted into the output 1 slot with the ‘red’ box around it. Similarly,
the banana plug with the black (negative) wire inserted goes into the
output 1 slot with the ‘black’ box around it.

REMEMBER: Click on the ‘Edit’
menu option and select ‘Start
GPIO server’ before you run
your script. For a reminder,
see Page 14.

CONNECTING COMPONENTS TO THE gPiO BOX

www.ComputingHistory.org.uk

CONNECTING COMPONENTS TO THE gPiO BOX
Let us now connect the pushbutton to input A of the gPiO box. Keep the LED connected to output 1 of
the gPiO box from the previous example.

The input pins on the gPiO box have a yellow ‘slot’ and a black ‘slot’.

The pushbutton has a red wire and a black wire connected to it (though polarity doesn’t make a
difference in this case).

Insert the ends of the wires coming out from the pushbutton into the given banana plugs.

Now, connect the pushbutton to input A of the gPiO box. Make sure that one wire is in the yellow slot
and the other in the black slot next to input A.

Now, run this script again:

The red LED comes on when you press the push button and goes off when you release the pushbutton.

www.ComputingHistory.org.uk

The Raspberry Pi Linux distribution comes complete with a package called IDLE. IDLE is the Python
integrated development environment where you can start to write your first Python scripts!

Open the applications menu (Menu button) and
select Programming

Click on Python 3

After a few seconds the development environment or
the ‘Python Shell’ will load

Click on File and then New File. This will open another
window where you can start to write some Python
script ...

Text Editor

LET’S PROGRAM IN PYTHON

Python shell

www.ComputingHistory.org.uk

In the new window, click on the blank space to
start typing.

Let’s type our first line of code…

Type this into the text editor:

print(“Hello World!”)

To run the code, press F5 on the keyboard.

You should be asked to Save your program first. Click OK and give it a name (you can call it “Hello”).

Note that the file will be saved as “Hello.py” in the default location /home/pi.

When the code runs, the Python Shell should come
into focus and display what we asked it to say, in our
case, Hello World!

Try out these ideas:

(*) Print out multiple lines by repeating the print
command for each new line:

print (“Hello world!”)

print (“How are you?”)

(*) Print your name:
print (“Hello, I’m Jeremy”) This is where you put

your name down

LET’S PROGRAM IN PYTHON

Green colour: text
we want to print

Purple colour: the
print command or
function

Notice how colour sepa-
rates the code out

REMEMBER:
- PRESS F5 ON THE KEY-
BOARD TO RUN
- SAVE WHEN ASKED TO

www.ComputingHistory.org.uk

CONTROLLING OUTPUTS
Let’s start by programming GPIO Pin 9 as an output pin.

As before, click on FILE and then NEW FILE, which will open up the TEXT EDITOR.

You can now enter the following lines of code:

import RPi.GPIO as GPIO
import time

GPIO.setwarnings(False)
GPIO.setmode(GPIO.BCM)

buzz = 9

GPIO.setup(buzz, GPIO.OUT)

while True:
 GPIO.output(buzz, 1)

print (“On”)
 time.sleep(1)

GPIO.output(buzz, 0)
print (“Off”)

 time.sleep(1)

PRESS F5 on the keyboard to run the
program.

SAVE the program when asked to.

The Python Shell window should now
display On, Off, On, Off repeatedly.

Importing the necessary packages and
modules

This option means that we will be using
GPIO/BCM numbers for our program.
If you want to use the actual pin numbers,
use the option GPIO.BOARD.

Using a variable to name the GPIO pin 9
[makes it easier to change pin numbers
without modifying the entire code]

Turning the GPIO Pin 9 ON (1) and OFF
(0).
Remember to add a line to wait for a sec-
ond [time.sleep(1)] before changing the
value of the GPIO pin.

Setting the GPIO pin as an output pin

www.ComputingHistory.org.uk

CONTROLLING OUTPUTS

Let’s now see what the GPIO pins are doing. We are going to connect a buzzer to the GPIO pins and
that should ‘buzz’ on and off when you run your program.

For this, we will need the following:
● Breadboard
● Buzzer
● Jumper wires

Connect the components as shown in the diagram.

NOTE:

● Longer leg (positive) of the buzzer to GPIO Pin 9 of the
Raspberry Pi.

● Shorter leg of the buzzer to any Ground (GND) pin of
the Raspberry Pi. This can be any of the pins with the
‘-’ next to them.

Breadboard Connections
Breadboard has rows and columns marked.

● Rows marked 1 to 17

● Columns marked A to J

To connect a buzzer to the Raspberry Pi, follow these steps:

● Insert the longer leg (+) of the buzzer into E10 and
shorter leg (-) into F10.

● Take one jumper wire and insert the pointed end in-
to D10. The other end of this wire plugs into GPIO Pin
9 on the Pi.

● Take the second jumper wire and insert the pointed
end into H10. The other end plugs into a GND pin
(any pin with a ‘-’ sign next to it) on the Pi.

With the buzzer connected up correctly (as shown in the picture above), if you run your ‘On-Off’ pro-
gram again, you should see it flashing on and off.

So now you have control of the real world!!

Just imagine the possibilities! We can use switches to control the buzzer in an intruder alarm, add
flashing LEDs and, maybe, a camera, connect motors to the GPIO pins and run little robot cars…..

Breadboard
Buzzer

Jumper wires

CIRCUIT DIAGRAM

To GND PinTo GPIO Pin 9

+ -

www.ComputingHistory.org.uk

So, we’ve switched an output pin ON and OFF. The next step is to read the value from an input pin - is
the value 0 or 1?

We’ll be using GPIO pin 15 as an input pin.

Now, modify the existing program so that it:

● reads the status of the GPIO input pin 15;
● turns the buzzer on if the status of the GPIO pin 15 is 0 i.e., the pushbutton is pressed;
● prints ‘pressed’ and ‘not pressed’ messages.

import RPi.GPIO as GPIO
import time

GPIO.setwarnings(False)
GPIO.setmode(GPIO.BCM)

buzz = 9
button = 15

GPIO.setup(buzz, GPIO.OUT)
GPIO.setup(button, GPIO.IN)

while True:
 status = GPIO.input(button)

if status == 0:
GPIO.output(buzz, 1)
print (“Button pressed”)

else:
 GPIO.output(buzz, 0)

print (“Button not pressed”)

PRESS F5 on the keyboard to run the program.

SAVE the program when asked to.

Use another variable to name the GPIO
pin 15

Set GPIO pin 15 as an input pin

Read the status of the input device or
GPIO pin 15

If the status of GPIO Pin 15 (stored in
the variable status) is 0 (low), that is,
the button, is pressed, then turn the
output on. If the status of GPIO Pin 15
is 1 (high), that is, the button is not
pressed, turn the output off.

SENSING INPUTS

www.ComputingHistory.org.uk

Let’s now see what the GPIO pins are doing. For this, we will need the following:
● Breadboard (the one you used for the

buzzer exercise)
● Pushbutton
● Jumper wires

Connect the components as shown in the diagram:

● One leg of the pushbutton to GPIO Pin 15 of the Raspberry Pi.

● The other leg to any Ground (GND) pin of the Raspberry Pi. This
can be any of the pins with the ‘-’ next to them.

Breadboard Connections
To connect a pushbutton to the buzzer circuit, follow these
steps:

● One end from the pushbutton goes into E15 and the
other end goes into F15;

● One end of a jumper wire goes into G15 and the other
end to Pin 15 on the Raspberry Pi;

● Take another jumper wire and push one end into D15
and the other end to a GND pin (any pin with a ‘-’ sign)
on the Raspberry Pi.

Now, when you run your program, you should be able to hear the buzzer go on only when the switch is
pressed. You should see the ‘pressed’ and ‘not pressed’ messages on the screen.

Is your program behaving strangely? Is the buzzer not responding as it should?

CIRCUIT DIAGRAM

To GND Pin

To GPIO Pin 15

Button

SENSING INPUTS

Breadboard

Push button

Jumper wires

www.ComputingHistory.org.uk

SENSING INPUTS
The problem is that we need an extra component in the push button
circuit called a ‘pull up’ resistor. And this ‘pull up’ resistor needs to be
connected to GPIO pin 15 as shown in the circuit diagram!

NOTE:

● A high value resistor like the 10 kOhm resistor in the diagram is
used as a ‘pull up’ resistor. This resistor in the circuit makes
sure that when the button is not pressed the GPIO pin 15 will
show a value of HIGH or ‘1’.

● When the button is pressed, the GPIO pin 15 will show a value
of LOW or ‘0’.

● Without the ‘pull up’ resistor, the input pin (GPIO Pin 15) may
‘float’ halfway between high and low and that is why your
program was behaving erratically.

However, for this workshop, we will not be using a hardware ‘pull up’
resistor.

We will connect the GPIO pin 15 to a ‘pull up’ resistor using software and Raspberry Pi makes this easy
by allowing us to use the GPIO.PUD_UP option when setting up an input pin.

The modified program should look like this:

import RPi.GPIO as GPIO
import time

GPIO.setwarnings(False)
GPIO.setmode(GPIO.BCM)

buzz = 9
button = 15

GPIO.setup(buzz, GPIO.OUT)
GPIO.setup(button, GPIO.IN, pull_up_down=GPIO.PUD_UP)

while True:
 status = GPIO.input(button)

 if status == 0:
 GPIO.output(buzz, 1)

print (“Button pressed”)
else:

 GPIO.output(buzz, 0)
print (“Button not pressed”)

The buzzer should now buzz only when the button’s pressed.

CIRCUIT DIAGRAM

10 kOhms

button

3.3V

To GND Pin

To GPIO Pin 15

www.ComputingHistory.org.uk

Raspberry Pi - www.raspberrypi.org
The official site for Raspberry Pi.

Raspberry Pi Forums - www.raspberrypi.org/forum
Lots of very useful chat here. There are specific sections for Education, Using the Raspberry Pi,
Programming and Projects.

Geek Gurl Diaries - www.geekgurldiaries.co.uk
A brilliant YouTube based web series for teenagers who want to be makers and creators of technology.
Great explanations and friendly relaxed approach.

Cambridge University Computer Lab - www.cl.cam.ac.uk/projects/raspberrypi
Lots of useful information, projects and links put together by Robert Mullins. Some of the information is
for the more experienced user.

Pimoroni - https://shop.pimoroni.com/collections/raspberry-pi
You can buy accessories for your Pi here.

USEFUL RESOURCES

