Business Computers : 40 year-old memories

Disclaimer:
I cannot guarantee the accuracy of the following; after 43 years these really are my dusty memories of the days at BCL, so my apologies in advance if any of this is wildly incorrect, and if I have accidentally misrepresented anyone!

I worked for BCL when they were located in North Street, Portslade, Sussex. I joined somewhen in 1969, and left towards the end of 1971 to work on IBM System 3 (RPG); joining Mallory Batteries (better known today as Duracell) in 1972 to get some experience with the new-fangled “disk storage”.

I was initially alerted to BCL's existence by an old school friend who had just joined them and distinctly remember being interviewed and thoroughly (!) tested by Mick Moorhead; being offered a job on the spot at twice my current salary! What could I do....

Actually, it was the factory that was in North Street, run by the technical director (whose name escapes me but who drove a very nice AC 428! … was it Harris?) and the engineering manager, who I believe was called Prem Bhalla?

Derek Hough was in charge of the programming department, which was then located just across the road from the factory in the building at the far end of East Street. I also recall a man called John Britten (maybe Britton?) who I think was a director (or founder) of the company, but he did not seem to play a prominent role after my initially recruitment? (perhaps he was a victim of “power politics?).

A while after I joined, the programming department moved to a unit on the Portslade trading estate in Victoria Road (a little further up Station Road, Portslade, and, as the name implies, near the station).

- - - - - - - - - - -

Others (ref: the “http://www.bcl-computers.org.uk/” website) have already mentioned the people I worked with, but the ones who's names I can remember were:

Derek Hough and Mike Tabor (his 2-i-c) , and Carol (Derek's secretary),

Mick Moorhead (and his brother David); the geniuses of the place,

Programmers David Collins (a houseboat man & VW fanatic), Stuart Jordan (whose Lotus Elan went up in flames on Shoreham Beach!), Ian Stewart, Rena Callaghan (later to become Mrs Stewart?), Paul Williams (who used to lose pencils in his wild hair!), Linda Gaines (who bought my VW Beetle), Belinda Knight, Mike O'Connell, Andy Willingale, Ray ?? (an ex-navy man).

Gill Symmonds, who used to be in charge of the punch crew and other admin/marketing tasks; and the lady in white in the advert for “Susie” seen on the “www.bcl-computers.org.uk” website.

….And that's about all I can remember clearly now... a great bunch and a lot of fun.

As well as the Portslade location, BCL had a main office in Tottenham Court Road, and a few other small (sales) offices scattered around the country. For example, I worked for a time out of the Leeds office while setting up a system for J.W.Pickles and Sons (paint factors in Dewsbury), in Sheffield (with a salesman named David Roth – a big fellow!), and on a system for William Brosters (“Lux-Lux” brand of ladies underwear and slumber wear – not one I can forget easily...) in Leek and Glossop.
While recalling customers, I also worked on a system for Progress Mercantile in Bletchley (I think they are/were part of the Pirelli group?).

The systems I worked on were SADIE and SUSIE machines.
Sterling And Decimal Invoicing Electronically
Stock Updating and Sales Invoicing Electronically

SADIE were hard-coded systems with fixed (very small) memory, delay-line processors, and driven by Hermes Bi-matic Typewriters using mag-striped Ledger cards.... really quite primitive! The data was written to the mag stripe on first creation of a ledger, and then that data was read back in as the card was loaded into the feed mechanism on top of the typewriter, updated by the next posting, and added to the mag stripe upon completion. When the ledger card was full (the card visually filled along with the mag-stripe – I do not recall any means of changing the data once written, or making corrections other than by additional postings), the card was then an “archive”, and a new card started.

SUSIE systems were somewhat similar in appearance, also with “delay-line” processors (more later) except that they progressed from Hermes typewriters to IBM “golf-ball” units (IBM 735 rings a bell?) with separate punched tape or punched card readers. Now the data was stored on a magnetic drum (rather like audio tape, but the size of a small washing machine drum!). This drum rotated at speed (high hundreds of RPM at least, if not into the thousands I think?) and had four banks of heads at 90 degree intervals around the circumference. The data was “picked off” as it passed, in the same way of an audio tape. I rather thought of it as a strip of tape about 18 inches wide, wrapped around the outside of the drum....

Initially, we only had 6144 bytes of data capacity... into that space we had to fit the program and the working data. The final data was usually stored onto mag-stripes, or tape, or card and read back in next time that program or account, or whatever, unitary resource we were using was required.... until the drums came along. Even then long term data was punched to tape, and tape was also used as a data medium between machines.

We also kept the programs on punched tape.... this was originally using some weird kit called a “McBee” punch/reader, but later progressed to the far superior unit made by GNT (as seen in the SUSIE marketing pictures already on the website).

The tape was moved from reel-to-reel in these GNT punches so fast , that if not spooled onto the receiving reel, the tape would travel horizontally for many feet across the floor! (yes, we tested it - we probably were all a little immature in those days!)

The tape itself also improved, and in the end we used “Mylar” (plastic impregnated tape – it didn't stretch). The punched out remnants of tape were called “chad” and were frequently used as confetti... not nice as their static potential was incredible and took ages to get out of clothes and carpets!

The Drums were made by the “Vermont Corporation” of America and allowed us to hold much more data (around 100-300k?), so now we could start hold data in the system. Since each machine was usually custom-programmed for one solution, there was no concept of holding different types of data; all data was accessible and (I think?) directly addressable.

The SADIE programs were first coded, then thoroughly “desk-checked” by a senior programmer, before being taken into the factory and soldered (!) onto VERO Electronics computer boards. You had to get the code right first time......!!

With the SUSIE, the code was punched to tape and then loaded into the Drums via the tape/card reader.

One of the technical challenges of the day was the reliability of the hardware... so we all had to code “read/write checks” into the programs. These small pieces of code would run first on every start up, and read and write random data to an area of the Drum. If the read data did not match the written data then an error message would be called up and displayed to the operator to “Call BCL” or something similar.

As you can probably imagine, not all of the test messages used were “clean”.... and there were a few occasions when someone forgot to erase the test warning messages before the machine was shipped off to the customer....

The machines had a “test” switch just inside the front cover, that was used to deliberately disable reading/writing to the Drum so that these messages could be tested...

There was at least one “urban myth” about a salesman who was demonstrating the newly arrived system to the customer's management, and used this switch to demonstrate the read/write check principle... only to be greeted by a very rude message on the IBM typewriter!

The SUSIE machine were really good at what their name implied – electronic invoicing and stock control – although I did get to work on a couple of rather different applications – namely Payroll (remember “coin analysis” for pay-packets! - I did a few of those...) and I also wrote some code for “jobbers” on the London Stock Exchange, and did some work at IPC (Bowling Green Lane).

The latter versions of the SUSIE (I think they were called “Multi-SUSIE” because they could support additional terminals rather than just the single desk/single operator format of the early versions), were the last of these type of machines and mark the end of my experiences at BCL

The MOLECULAR” series of machines arrived just as I was leaving BCL, and were totally different beasts to their SADIE/SUSIE predecessors. I never worked on those systems.

NOW, CODING...
I am really struggling to remember much about this now, but I can tell you the basics of how it worked, if not the full instruction set....

To start with we coded in OCTAL.

So we had coding sheets that looked like this:-
 SHEET - 00
	00
	41
	40
	

	01
	02
	41
	

	02
	12
	42
	

	03
	42
	43
	

	04
	05
	44
	

	05
	00
	45
	

	06
	48
	46
	

	07
	11
	47
	

	10
	26
	50
	

	11
	36
	51
	

	12
	00
	52
	

	13
	00
	53
	

	14
	..
	54
	

	15
	etc
	55
	

	16
	..
	56
	

	17
	
	57
	

	20
	
	60
	

	21
	
	61
	

	22
	
	62
	

	23
	
	63
	

	24
	
	64
	

	25
	
	65
	

	26
	
	66
	

	27
	
	67
	

	30
	
	70
	

	31
	
	71
	

	32
	
	72
	

	33
	
	73
	

	34
	
	74
	

	35
	
	75
	

	36
	
	76
	

	37
	
	77
	

 Each position represents a storage address, so the first entry (“00”) on the first sheet (“00”) would indicate the start of the program as loaded into storage.

Each instruction then became addressable, which was the foundation for the logic flow through the code.

The typewriter interface signalled, at the hardware level, a range of codes that could be identified by the program. I cannot remember the exact combinations, but the letters of the alphabet were “paired” such that a press on either of the pair would result in the same action in the program. I do not know what the logic was behind the pairing – it may have been something to do with frequency of use of the letters, or perhaps placement of the keys of the keyboard?
Whatever it was it allowed us to allocate a key (or keys) to a function that made some sort of sense to the user; for example “A” to add a new record... “L” to load data....
I do recall that “A” and “K” were one such pair.

The program was more or less passive, but reactive to input, so once loaded it just sat there and waited for an interrupt of keyboard input to do something.

In the program we could set up a test for the “A” key to be pressed and then jump (branch) to that address in the program to do that function.

Hence in the above sample, the code starts with (and before any of my peers tell me this is all wrong, I am sure I have forgotten the usually prelude coding that set things up, and also the “stop here and wait” code that prevented the code from just running through the initial instructions, but you will, I hope, get the general idea) a “41” test.

“41” is the instruction that associates the code with the “AK” sequence from the keyboard. This instruction is THREE positions long, the following two entries therefore name the relative address in the program where the functions code lies....in this case “sheet 02, position 12”.

This is followed by other key/character tests (let's say for arguments sake that “42” tests for the “B and L” keys, while “48” tests for the “H and R” keys), each “jumping” to a different relative location in the code (the start of sheet 05 and position 26 of sheet 11 respectively).

Each of these “functions” usually ended in a “must jump” back to the start (360000) or a exit.

The “36” was a special instruction – this is a “must jump” (or “unconditional branch” if you prefer assembler) and will always be taken regardless of input. So in this section, from position “00” to “13”, the code will go round in a loop until it detects key usage that matches one of the three tests.
When we get to a section of code that actually does something, then we could use the arithmetic instructions, and write -to-drum (etc) to manipulate the and save the data as required.
The arithmetic operation....

This was handled by the system using “delay-line” process(es). This was a sequential access process, that used phase-shift sequencing to represent “bits” in the arithmetic functions. There were 8 “registers” (I think each was a delay line?) that held a value of up to '99999999' (more shortly).

(The phase-shifted sine waves that represented the “bits” could be seen via an Oscilloscope)

To perform calculations (evaluate formulae) the registers and associated instructions could be used like this:

Instruction
Function
Shunt

move the registers in either the Alpha or Beta rows

Shift

move the bits in a register

Add/

Subtract/

Multiply/

Divide

basic arithmetic functions

The Registers were arranged in two rows of 4, the top line being the “Alpha” row and the bottom the “Beta”.

Values such as constants could be coded into the programs, or read in from data input; these values could then be moved into the first positions registers (I think, either “A1 or B1”).

Since ALL entry into the registers took place in the first register, existing data was preserved by “shunting” the registers – this meant that an “Alpha shunt” moved A1 to A2, A2 to A3, A3 to A4, and A4 to A1.

The same applied to a “Beta shunt”

All arithmetic was performed using the “A1”, “B1” and “B2” registers:-
Add

:added the contents of B1 to A1, the result residing in A2; B1 was unchanged.
Subtract
:subtracted the contents of B1 from A1 the result residing in A1; B1 was unchanged.
Multiply
:multiplied the contents of B1 by the contents of B2, the result residing in A1; B1 and

 B2 remaining unchanged.
Divide

:divided the contents of B1 by the contents of B2, the result residing in A1 and the

 remainder residing in B2; B1 remaining unchanged.

Decimals could be “adjusted” by the use for “shifting” in a register, which moved the bits left or right.

So it was quite fun, coding all the shifts, shunts and arithmetic commands to emulate a formula.
Testing and debugging was something else...
We used to use an Oscilloscope to peek at the contents of the register. This was directly connected to a purpose-made point in chassis, and coupled with the ability to “one-step” the code, allowed us to see exactly what happened in the registers. The bit content of each register was (barely!) readable from the peaks shown on the Oscilloscope.

The representation of the content of the registers (I think 32-bit?) was also odd (at least, if I have got this right, I have not come across quite the same representation since)... I seem to recall that the maximum value that could be held in a register was “99999999”, although the negative was always shown with a “15” in the first position (eg “-1” = “(15)9999999”) - the “15” being “1111” in binary, the high-order bit showing that it was negative, since it was using “Two's Complement” arithmetic.

(We never used “A.B.C.D.E.F” hex representation that I remember)

We used to program using a “delay-line simulator” (or “shuffle board”) ; I remember making my own (a few actually) from some formica, plywood and pine; consisting of a tray and 8 pine bricks with a layer of formica on top, like this :-

	A1
	A2
	A3
	A4

	B1
	B2
	B3
	B4

… the bricks could be lifted out and moved around the tray to simulate the “shunts” and the formica allowed us to write (and wipe it off) the values in felt-tip upon them.... so we could simulate the movement of the registers as we desk-checked the code!

You know, with a little more thought, and if someone could come up with a operating instruction manual, I think I might still be able to write a working (?) program....

