TM222 HUM THE OPEN UNIVERSITY
TM222 The digital computer

An Inter-faculty Second Level Course

Technology/Mathematics

TM222 Course Team

Dr P.l. Zorkoczy (Chairman)
Dr G. Alexander
Mr C.C. Bissell
Mr G. Hammond
Ms P. Higgins

Dr D.C. Ince

Ms A. Jones

Mr R. Loxton

Mr G. Martin

Dr W.S. Matheson
Mr M.A. Newton
Dr D.N. Pim

Mr P.D. Wilson

Support Staff

Mr G. Bellis
Mr R. Coles
Mr J. Garne
Mr D. Jones
Mr N. Stephenson
Mr M. Story

The Open University Press, Walton Hali, Milton Keynes, MK7 6AA

First published as the PT502 HEKTOR User Manual, 1981.

Revised and republished with present title, 1982. Second edition, 1983.
Reprinted 1984, 1986.

Copyright © 1982 The Open University.

All rights reserved. No part of this work may be reproduced in any form, by
mimeograph or any other means, without permission in writing from the publisher.
Designed and illustrated by the Graphic Design Studio of the Open University.
Filmset by Filmtype Services Limited, and printed in England by The Garden City
Press Ltd, Letchworth, Herts SG6 1JS.

ISBN 0 335 17125 7

This text forms part of an Open University Second Level Course. For general
availability of other material in this course, please write to: Open University Educa-
tional Enterprises, 12 Cofferidge Close, Stony Stratford, Milton Keynes, MK11 1BY,
Great Britain.

Further information on Open University courses may be obtained from the Admis-
sions Office, The Open University, P.O. Box 48, Milton Keynes, MK7 6AB, Great
Britain.

2.3

CONTENTS

Study guide

PART | INTRODUCTION AND SET-UP

1
2

PART Il

Introduction to the User Manual

Overview of the HEKTOR system

2.1 The structure of a computer
2.2 The HEKTOR microcomputer board
2.3 Inside the processor
2.3.1 The arithmetic/logic unit
2.3.2 The program counter
2.3.3 The control unit
2.4 Coding of instructions and data
2.5 Subroutines and the stack
2.6 Introduction to system software

HEKTOR system set-up

3.1 Parts checklist
3.1.1 Components supplied
3.1.2 The television set
3.1.3 The cassette recorder
3.1.4 Cassettes
3.1.6 Mains supply and plug

3.2 Handling precautions

3.3 Connecting HEKTOR components
3.3.1 Connecting a mains plug

3.3.2 Connecting the power-supply unit

3.3.3 Connecting the TV set
3.3.4 Connecting the cassette recorder
3.3.56 Connecting the peripheral board
3.4 HEKTOR self-testing ’
3.4.1 Switch-on tests
3.4.2 User RAM test
3.4.3 TV interface test
3.4.4 Keyboard test
3.4.5 Recording a test tape
3.4.6 Reading the test tape
3.4.7 Peripheral board tests
3.6 Hardware malfunctions

3.56.1 Missing or damaged components

3.5.2 Apparent loss of power
3.5.3 Memory faults
3.6.4 Unsatisfactory TV display

3.5.5 Difficulties with the cassette recorder

3.6.6 Keyboard faults
3.5.7 Peripheral board faults

4 Using the monitor

4.1 The monitor structure

4.2 Monitor behaviour

4.3 Monitor command format
4.4 Monitor commands

USING HEKTOR’S MAIN SOFTWARE FACILITIES

Scocoto (00]

11
11
12
12
13
15

16

16
16
16
16
16
16
18
18
18
18
18
19
19
19
20
20
20
20
20
20
21
21
21
21
21
21
21
22
22

24

24
24
26
27

441 Break-point command

4.4.2 Copy command

4.4.3 Editor entry command

444 Fill command

445 Gocommand

4.4.6 High-level language {BASIC) command
447 Load-from-tape command

4.4.8 Memory modify command

449 Print command

4.410 Query command

4.411 Rewind command

4.412 Save-on-tape command

4.413 Test command

4.4 14 Verify tape command

4.4.15 BASIC re-entry command

4.4.16 Register examine/modify command
4.4.17 Single-step command

5 Using the editor

5.1
5.2
53
54

6.1

6.2

6.3

6.4

6.5

71

The editor structure

Editor behaviour

Editor command format

Editor commands

5.4.1 Assembler entry command
5.4.2 Delete command

5.4.3 Edit line command

5.4.4 Insert command

54.5 ‘Kill' command

54.6 Load-from-tape command
5.4.7 Monitor entry command
5.4.8 Print command

5.4.9 Query command

5.4.10 Rewind command

5.4.11 Save-on-tape command
5.4.12 Verify tape command

8085 assembly language

Overview of assembly-language programming
Assembly-language statements

6.2.1 Comment lines

6.2.2 Assembly-language instructions
6.2.3 Assembler directives

Operand specification

6.3.1 Specifying 8-bit operand values
6.3.2 Specifying 16-bit operand values
6.3.3 Specifying operand addresses
6.3.4 Specifying registers

Opcode specification

6.4.1 Program counter (PC)

6.4.2 Stack pointer (SP)

6.4.3 Flag register (F)

6.4.4 Description of instruction set
Use of the assembler

6.5.1 User symbol table

6.5.2 Machine-code program

6.5.3 Program listing

6.5.4 Error messages

6.5.5 Assembler options

Using HEKTOR's BASIC language

Introduction
7.1.1 Short index of BASIC keywords

27
27
27
27
27
27
28
28
28
28
29
29
29
29
29
29
30

31
31
32
33
34
34
34
34
34
35
35
35
35
36
36
36
36

37
37
37
37
38
38
39
39
40
40
41
42
42
42
46
46
52
52
53
53
53
54

55

55
55

7.2 The BASIC command mode

7.2.1 Introduction: What is the BASIC command mode?

7.2.2 An introductory example

7.2.3 Storing and editing programs

7.2.4 Running programs

7.2.5 Debugging: Finding program errors

7.2.6 Format and character control

7.2.7 Saving and loading programs on cassette tape
7.3 Wiriting BASIC programs

7.3.1 The structure of a BASIC program

7.3.2 Aline of BASIC

7.3.3 BASIC variables

7.3.4 BASIC operators and expressions

7.3.5 BASIC functions

7.3.6 Flow-of-control statements

7.3.7 Input/output instructions

PART Il FURTHER TECHNICAL INFORMATION

8 HEKTOR system hardware

8.1 The microcomputer bus

8.2 The microprocessor

8.3 The memory subsystem

8.4 The keyboard interface

8.5 The TV interface

8.6 The cassette/serial line interface
8.7 The power supply

8.8 Connection to the bus

8.9 Connection to the serial line

HEKTOR system software

9.1 System data structure
9.2 Interrupt structure
9.3 1/0 structure
9.4 TV handlers
9.4.1 TV output
9.4.2 Special messages
9.4.3 Output with hex conversion
9.5 Keyboard handlers
9.6.1 Accepting characters
9.5.2 Accepting a line
9.6 Cassette handlers
9.6.1 Saving data
9.6.2 Loading data
9.7 Serial line handlers
9.8 Processing utilities
9.9 Tune machine
9.10 SORT routine

APPENDICES

Appendix A: HEKTOR memory maps
Appendix B: Hexadecimal conversion tables
Appendix C: 8-bit ASCII codes

Appendix D: HEKTOR graphics symbols
Appendix E: HEKTOR BASIC error messages
Appendix F: 8085 operation codes

Appendix G: HEKTOR command lists

55
55
55
56
56
57
57
58
58
58
59
59
61
61
62
63

68

68
68
69
70
71
73
74
74
74

75

75
75
78
78
78
79
79
79
79
80
80
81
81
82
82
83
84

STUDY GUIDE

The HEKTOR User Manual is a reference manual,
rather than part of the main teaching material of
TM222. You will not need to read it cover-to-
cover. Only those parts which are specifically
referred to in the course units will be assessed.
Moreover, parts of it go beyond the scope of
TM222. You will be directed to those parts you
will need at appropriate points in the course.
However, you may find it interesting to browse
through, as a self-contained description of a
microcomputer, or as a second presentation of
some material also covered in the course units.

The User Manual may serve various functions for
you:

1 Set-up and testing — Section 3 will help you
to connect the various parts of HEKTOR, and
test that it is operating correctly.

2 How to use HEKTOR — Sections 4-7 describe
the main facilities built into the machine. You
will need to use these sections to learn to use
HEKTOR and will then use them as reference.

3 For reference — The appendices contain
conversion tables and summaries of HEKTOR's
commands, which you may find useful.

4 Further technical information — Sections 2, 8
and 9 are optional reading for TM222.

1 INTRODUCTION TO THE USER
MANUAL

Welcome to the HEKTOR microcomputer! This
manual has been written to make your use of
HEKTOR as easy as possible and to provide a
description of its facilities.

The contents of this manual are divided into three
parts — Part / Introduction and set-up; Part I/
Using HEKTOR's main software facilities; Part /1/
Further technical information.

In more detail, the contents of this manual are:

Part|l Introduction and set-up

Section 2 Overview of the HEKTOR system

This section describes the structure and operation
of computers in general, and relates this general
structure to the particular components and
operation of the HEKTOR microcomputer. There is
also an introduction to HEKTOR's system
software.

Section 3 HEKTOR system set-up In addition to
information on connecting and setting-up your
HEKTOR, this section contains handling
precautions and a description of how to use the
built-in self-test program to check for any system
malfunction. There is also a subsection to aid
diagnosis of, and recovery from, hardware faults.

Partll Using HEKTOR’s main
software facilities

Section 4 Using the monitor The monitor is a
system program which controls the resources of
HEKTOR (principally memory and interfaces) in
response to commands typed on the keyboard. It
enables the user to examine and modify the
contents of memory locations, transfer data to and
from tape cassettes, and to execute programs.

Section 5 Using the editor The editor is a system
program that enables the user to handle lines of
text. Its commands permit the user to store lines of
text in memory, examine or modify them, and save
them on or load them from tape cassettes. In
particular, it is of use when writing programs in
HEKTOR'’s assembly language.

Section 6 8085 assembly language This section
describes the set of instructions built into
HEKTOR'’s type 8085 microprocessor. The
instructions are given both in machine language
form (i.e. in hexadecimal code) and in assembly-
language form. These descriptions will be a useful
reference when you are programming in assembly
language. The section also describes the use of the
assembler system program, which translates

programs from assembly language to machine
language, ready for execution.

Section 7 Using HEKTOR's BASIC language
This section gives a concise summary of the
commands and facilities available when you write
programs in BASIC on HEKTOR. It is not intended
as a first introduction to BASIC, or as a textbook.

Part Il Further technical
information

Section 8 HEKTOR system hardware This
section contains a more detailed description of the
HEKTOR hardware than is contained in Section 2.

Section 9 HEKTOR system software This section
gives details of the way in which the HEKTOR
system software interacts with the hardware.

Appendices

The appendices contain memory maps, conversion
tables of ASCII characters and hexadecimal
numbers, HEKTOR's graphics symbols, HEKTOR
BASIC error messages, and tables of all of
HEKTOR's commands. These include the 8085
operation codes, monitor, editor and assembler
commands, and BASIC keywords.

2 OVERVIEW OF THE HEKTOR
SYSTEM

This section contains a review of the basic structure
and principles of operation of digital computers.
These general principles are illustrated with respect
to the HEKTOR microcomputer system. The section
also serves to introduce some of the terminology
that will be used in the later sections of the manual.

2.1 The structure of a computer

The overall structure of a computer can be described
in terms of five principal subsystems:
The processor (or processing unit).

The memory.
The interfaces.
The peripherals.

The computer bus.

These subsystems are connected together electric-
ally, as shown schematically in Figure 2.1. The bus
is acommon highway, to which the processor, inter-
faces, and memory are connected. It consists only of
a set of electrical connections, but these are or-
ganized so as to allow the orderly communication of
data between any of the other subsystems connec-
ted to it. The bus is important because it offers
flexibility; extra memory or additional interfaces can
be added to a computer simply by connecting them
to the bus — the existing interconnections do not
have to be modified.

processor memory
[
y ¥ computer bus
Y Y 4
interface interface interface
A } A
Y
peripheral peripheral peripheral

Figure 2.1 Computer structure

The processor organizes the fetching of data via the
bus, performs operations on it, and despatches the
results. It is directed in these tasks by a list of en-
coded machine instructions called a program. One
of the jobs of the memory is to hold this list of in-
structions which the processor will fetch, interpret,
and execute, one at a time. The memory also holds

data that will be operated on by instructions, and the
results of these operations can be stored in memory
for later use. The memory, therefore, is used for
several different purposes. It can retain data which
is to be operated on by machine instructions, as well
as the list of instructions itself. There is no distinction
between the way in which data is stored and the way
in which instructions are stored; it is the responsi-
bility of the program designer to ensure that data in
memory representing numbers to be arithmetically
processed, say, is not treated by the processor as
instructions in a program, and vice versa.

If the computer is to be generally useful, not only
must it be able to process data held in memory, but
it must also be able to communicate data to and from
equipment external to the memory and processor.
Various displays, knobs, switches, sensors and
actuators can be controlled or interrogated by the
processor. When connected to the computer sys-
tem, these devices are called peripherals. Because
the data they supply or expect to receive is seldom
in the precise electrical form required for trans-
mission via the bus, additional electronic circuits are
required to provide the necessary conversions.
These pieces of circuitry are connected between the
bus and the peripherals as shown in Figure 2.1, and
are called interfaces.

In summary, the processor (or processing unit)
controls the operation of the computer, by a
sequence of operations resulting from its execution
of machine instructions held in memory. These
operations involve processing data held in memory
or supplied, via an appropriate interface, by an input
peripheral. The data resulting from these processing
operations can be returned to memory or sent to an
output peripheral. All data transfers between the
processor and memory or peripheral interfaces are
via the computer bus.

2.2 The HEKTOR microcomputer
board

The microcomputer board layout inside HEKTOR
can be viewed by removing the lid in the top of the
case.

Figure 2.2 is a plan view of the HEKTOR microcom-
puter printed-circuit board, showing the main com-
ponents grouped into six subsystems. The principal
peripherals are a cassette recorder, a TV set, and a
keyboard.

Of these, only the keyboard is mounted on the HEK-
TOR board itself. In Figure 2.2, the keyboard is at the
bottom. The line around the keyboard shows the
area of the board that includes the keyboard and its
interface. The keyboard interface consists primarily
of the component labelled IC14, and it connects
both to the individual keys on the keyboard and to

9

(" Power supply W
[1c16 | SKT9]
SKT6 [1ci6] SW1]
Cassette nterface SKT
and senal line UHF modulator 10
SKT7 [er] 7] e
RL1 [ic2] [iea] [rca | Ics Ice
—] Y
[—1 Processor/ o1
=R Ic8 Ico Ic Ic
— 7 11 12
—d
— N LED?
— X TAL | IC13] O
— SKTO SKT1 SKT2 SKT3 SKT4 SKT5
| IC14 | icl v
15
Keyboard Memory
! “ # $ % & ’ () 0 = ~ ? !
RESET| 2 3 4 5 6 7 8 9 A N
BREAK| @ Q w E R T Y U 1 s} P <« |HOME| —»
SHIFT + .
K L RETURN|
CTRL{ ookl A S D F G H J : . ;
< > 2
SHIFT :: z X C \% B N M , . ,]} SHIFT

_

Figure 2.2 HEKTOR microcomputer board layout

the microcomputer bus, which consists of some of
the copper printed-circuit tracks in the area of the
board labelled ‘processor/bus’.

The processor is IC13 in Figure 2.2, and it requires
a few extra electronic components around it to en-
able it to operate. But most of this area of the board
is taken up with the bus tracks which go to the edge
connector (between the slots at the left-hand side of
the processor/bus area). This edge connector en-
ables peripheral interfaces or memory external to the
main HEKTOR board to be connected to the
microcomputer bus.

The memory subsystem includes IC7, IC12, and
SKTO to SKT5, in Figure 2.2.

The interface components for the cassette recorder
are shown in the top left-hand corner. The recorder
itself is connected to its interface by means of the
socket labelled SKT7. There is also a general-
purpose serial line interface in this area of the board,
which enables a wide range of peripherals (such as
printers) to be connected via SKT6.

Above the memory subsystem, in Figure 2.2, is the
TV interface, which connects via SKT9 to the aerial
socket of a standard UHF TV receiver.

The remaining components on the board, at the top

10

and right, are a part of the power supply for HEK-
TOR. Mains power, transformed down to a lower
voltage, connects to SKT8, from where it is conver-
ted into the stable D.C. electrical supply required by
the electronic components on the HEKTOR board.

2.3 Inside the processor

Figure 2.3 is a simplified diagram of the internal
structure of a processor (of which the 8085
microprocessor in HEKTOR is a typical example).

Internal bus
1 1
Y Y Data
Temporary | | Flag Register
Accumulator Register Register
ﬂk
] Controi | |Register
| ALU Unit Array

Control Address Data

Microcomputer bus

Figure 2.3 Structure of the processor

The processor contains four main groups of com-
ponents:

® The registers.

¢ The arithmetic/logic unit (ALU).
® The control unit.

® The internal bus.

Of these components, the internal bus (like the
microcomputer bus of the microcomputer as a
whole) acts as a common intercommunication facil -
ity for the other components.

The registers hold data within the processor. Some
hold data for a specific purpose related to the opera-
tion of the computer, and others are available for
general use by the program designer as a small but
convenient memory.

2.3.1 The arithmetic/logic unit

The arithmetic/logic unit is shown in Figure 2.3 as
the ALU. It is the ALU that performs an actual
processing operation on data, as directed by a
machine instruction following its fetching into, and
interpretation by, the control unit.

Suppose two data items, each representing num-
bers, are to be added together — a typical processing
operation. One of the numbers to be added is as-
sumed to be stored in the accumulator register; the
second number may be in one of the general regis-
ters in the register array. (The machine instruction
calling for the addition operation will specify which
general register.) In interpreting this instruction, the
control unit will first cause the second number to be
copied into the temporary register, via the internal
bus. The ALU will then perform the addition, usually
returning the result (via the internal bus) to the
accumulator, where it replaces the original number.

The result of the operation is available (in the
accumulator), but it is also useful to have a summary
of the features of this result. This is the purpose of
the flags in the flag register. There is a flag (a simple
ves/no indicator) which indicates whether the result
was zero or not, another which indicates the sign of
the result (positive or negative), and so on. Other
machine instructions can test individual flags and
behave accordingly. Thus it is possible to execute
one sequence of instructions if the result of a
previous addition is positive, and a different
sequence if the result was negative.

The ALU can be instructed to perform a variety of
arithmetic operations such as addition and subtrac-
tion, and logical operations such as AND and OR.
There are, of course, separate machine instructions
for each type of operation, and different processors
have different instruction sets. But these simple
operations available in the instruction set can be
combined by the programmer so as to provide
arbitrarily complex processing operations. (Multi-
plication, by repeated addition, is one example.)

2.3.2 The program counter

One of the registers in the register array of Figure 2.3
has a single, special purpose. Itis called the program
counter, and it holds information specifying the
location in memory of the next machine instruction
to be executed by the processor.

The memory consists of a collection of identical
memory locations, each of which can hold a piece of
data or part of a machine instruction. (In most
microcomputers, a machine instruction occupies
one, two or three adjacent locations.) Each location
is identified by a unique number called its address,
and consecutive locations in memory have
consecutive addresses, as shown in Figure 2.4.

memaory
addresses locations

0
1
2
3
4
5
6

Figure 2.4 Memory

locations and addresses

Suppose that the list of instructions forming a
program is stored in an area of memory, and that the
first instruction in the program (that is the one oc-
cupying the location with the lowest address)
occupies the single location with address 100. In
order to execute this program, the program counter
(or PC register) must contain the address 100. (How
this address can be stored in the PC will be
discussed later.) The first action of the processor in
executing this program, is to communicate the
address in the PC to the memory subsystem, via the
address part of the computer bus (see Figure 2.3).
The memory responds by communicating the in-
formation stored in the addressed location back to
the processor via the data part of the computer bus.
This information is stored within the control unit of
the processor as the machine instruction it is to
execute. This fetching of an instruction is sum-
marized schematically in Figure 2.5.

memory
processor locations
add_ress
Control pC 100

)

S R T

address bus

data bus

Figure 2.5 Fetching an instruction

11

The instruction is then ready for interpretation and
execution by the control unit of the processor (pos-
sibly using its ALU). But the control unit, before
executing the instruction, increases by one the num-
ber stored in the PC register. Then, having com-
pleted the instruction execution, the PC will be
‘pointing’ to the next location in memory, which in
this example has the address 101 and contains the
second instruction in the program. The second
fetch/execute sequence can then begin automatic-
ally.

Some machine instructions may occupy two or three
memory locations. In these cases, there are extra
‘fetches’, with the PC contents increased by one
each time, before the ‘execute’ phase of the
sequence.

For much of the time, the instructions in a program
are fetched and executed in the order that they are
stored in memory. But sometimes, the programmer
will want to interfere with this natural sequence. (An
example already mentioned is that of using the value
of a flag to decide which of two sections of program
should be executed next.) A simple instruction
which enables the program sequencing to diverge
from the natural order is the jump type of instruction.
This instruction includes a memory address. When
the instruction is executed, the address part of the
instruction is simply stored in the PC register. Then,
as the processor moves on automatically to the next
fetch/execute sequence, the new instruction will be
fetched from the location whose address was
specified in the jump instruction.

2.3.3 The control unit

The control unit (see Figure 2.3) of the processor
has already been mentioned in the context of the
interpretation of machine instructions. The control
unit issues the sequence of electronic signals which
trigger the transfer of data of all types both inside
and outside the processor. For example, within the
processor, they cause the transfer of data from a
general-purpose register to the temporary register.
Other control signals define which operation, of the
several available, is to be performed by the ALU
during the execution of a processing instruction.

Similarly, the control unit issues control signal
sequences on the control/ part of the computer bus
(Figure 2.3), which enable properly timed data
transfers between the processor and memory (or
interfaces). This timing aspect of the control signals
is achieved by the use of a c/ock signal, a regularly
spaced sequence of electrical pulses or ‘ticks’. Con-
sider again the instruction fetch sequence of Figure
2.5. At one clock tick, the control unit will cause the
PC’s contents to be made available on the address
bus. Clearly it will take some time before the memory
can respond by placing the required machine

12

instruction on the data bus. So the control unit wili
wait for one or more clock ticks before accepting the
instruction from the data bus.

Besides timing this data transfer, the control unit will
have to define the direction of data transfer. One of
the signals making up the control bus indicates to
the memory whether the addressed location is to
have data read from it or written into it. That is, is the
direction of data transfer to the processor from the
memory, or vice versa?

Besides the control bus signals which allow for the
orderly transfer of data via the bus, there is another
group of signals, which enable events outside the
computer to influence the normal sequence of
program execution. These are called interrupt sig-
nals. When the control unit of the processor receives
an interrupt signal, it suspends program execution
(after completing the execution of the current in-
struction) and performs some special action,
depending on which of several types of interrupt is
received. Typically, the interrupt will be a request for
attention from some peripheral device, and the effect
of the interrupt is similar to that of a ‘jump’ instruc-
tion; that is, the processor starts executing a separate
piece of program called an /nterrupt handler which
will perform the operations required by the
peripheral device.

A special type of interrupt is the reset signal. This
signal is generated automatically when the com-
puter is first switched on (and there also may be a
reset switch that the computer operator can use). In
HEKTOR, the reset signal sets the PC contents to
zero, thus enabling the program which is stored in
memory at address zero to be executed. This solves
the problem of how to set the program counter to a
known address, a necessary preliminary to allowing
the automatic fetch/execute sequence of the
processor to take control of the computer.

2.4 Coding of instructions and data

When information in a computer is transmitted from
one place to another by means of electrical connec-
tions, the information is represented in the form of
binary voltages on each of the connecting tracks or
wires. That is, the voltage is either high (a few volts,
usually) or /ow (zero volts). For a single wire,
therefore, the transmitted data can have only one of
two values. By convention, the symbols 1 and O are
used to represent these two values. Two-valued
data is sufficient for some purposes; for example, the
flag data (Subsection 2.3.1), or the read/write
control line (Subsection 2.3.3). But for most pur-
poses, there is a need for a more extensive range of
values; there are more than two addresses in the
memory, for example.

If the combination of binary values carried by a set
of connecting wires is used, the desired expansion
of values occurs. In HEKTOR, for example, the data
bus consists of eight wires, each of which carries a
binary signal. There are, therefore, 26=256 possible
patterns of high and low voltages on this set of eight
wires. Using the symbols 1 and O for the values on
each wire, the range of patterns is from 00000000 to
11111111 on the set of eight wires. These symbolic
patterns are called binary codes, and if there are
eight binary values used, the code is an 8-bit binary
code. ('Bit’ is a contraction of ‘binary digit’.)

Not surprisingly, if the data bus carries N-bit codes,
the memory also holds an N-bit code in each loca-
tion. That is, each memory location consists of N
binary storage cells, each of which can store a 1 or
a 0. The value of N for a particular computer is called
its word length, and data is stored, transmitted and
processed as N-bit words. For the special case of
8-bit words (which includes HEKTOR and many
other microcomputers), the term byte is used.

The interpretation placed on each of the 256 codes
available with an 8-bit word length depends on the
context. For example, the unsigned integer numbers
from O to 255 are often represented by the binary
codes from 00000000 to 11111111, respectively.
With this interpretation, addition and subtraction
can be performed by the processor, with the
operands and the result all represented as binary
codes.

But binary codes are required for other purposes. For
example, memory addresses have to be specified.
Now, in most microcomputers there is a need for
more than 256 memory locations, so 8-bit codes are
inadequate as memory addresses. In fact, 16-bit
addresses are usually used, allowing up to
2'%=65536 memory locations to be individually
addressed. The address bus in HEKTOR therefore
consists of sixteen wires, and the PC register is a
16-bit register.

The machine instructions are also represented as
binary codes. As was mentioned earlier, HEKTOR
instructions are represented as one, two or three
bytes. For all instructions, the first byte fetched from
memory is the operation code for the instruction. For
example, 10000000 is the binary code for one of
HEKTOR’s addition instructions, and 11000011 is a
‘jump’ operation code. The control unit of the
processor decides, from the operation code,
whether there are additional bytes to be fetched for
the instruction in question.

If there are additional bytes in the instruction, they
supply operand information. For example, the
operand of the ‘jump’ instruction is an address in
memory. This address is represented as a 16-bit
code, which is split into two 8-bit codes when
stored in memory as part of the jump instruction.

Therefore, the jump instruction is a three-byte in-
struction: one byte of operation code, and two bytes
of operand information.

The operand may be a 16-bit address, as for the jump
instruction, or it may represent other information. A
single-byte operand may, for example, represent a
number to be added to the data in the processor’s
accumulator. The versatility of a processor’s instruc-
tion set depends not only on the range of basic
operations available, but also on the variety of ways
in which operand information can be specified in
instructions.

2.5 Subroutines and the stack

In Subsection 2.3.3, the concept of interrupts was
introduced. When the processor is interrupted, it
suspends the execution of the current program, in
order to execute a separate piece of program in res-
ponse to the interrupt — the interrupt service routine.
Having executed this routine, what happens next?
Clearly, the programmer would like the execution of
the original program to continue from the point at
which it was interrupted. For this to be possible, the
computer must ‘make a note’ of the address of the
next instruction to be executed in the original
program, before starting execution of the interrupt
service routine. Having completed the service
routine, the processor can then use this saved
address information to resume execution of the
original program.

This facility of being able to break off from the nor-
mal sequence of a program, in order to perform some
subsidiary task and then return to the main program,
is a very powerful one, not simply restricted to inter-
rupt handling. Suppose that there is a task that has
to be performed several times, at different points
throughout a program. The list of instructions which
perform this task can be stored in memory as a
subroutine, separate from the main program. Then
whenever this task is required in the main program,
the machine instruction which cal/s this subroutine
is inserted (instead of the list of instructions making
up the subroutine). The ‘call’ instruction is similar to
the ‘jlump’ instruction, in that it loads the program
counter with the address specified by the operand
part of the instruction. But, in addition, the ‘call’
instruction stores the old program counter's con-
tents in memory; that is, it ‘'makes a note’ of where to
return to in the main program after the subroutine is
executed. The subroutine is then automatically
executed. Its last instruction is a ‘return’ instruction,
whose function is to restore the program counter’s
contents so as to enable the main program to be
resumed.

The return instruction has no operand — the return
address is whatever was stored when the previous

13

matching call instruction was executed. Therefore
the subroutine can be called, as and when required,
by the main program. This is shown in Figure 2.6.
Further, subroutines can themselves call other
subroutines, as shown in Figure 2.7, when they are
said to be nested.

main program

instructions

subroutine

instructions
call subroutine {transfer of control) .
call subroutine

return
Figure 2.6 Execution of a subroutine
subroutine 1

main program

memory
locations

i ___—top of stack

increasing
addresses

bottom of stack

Figure 2.8 The stack

in the stack pointer is first reduced by one, to point
to the unused location just above the stack. The data
byte is then stored in this location, defining a new
top of stack. This situation is shown in Figure 2.9. To
retrieve a byte from the stack, the reverse operation
is performed. That is, the required byte is read from
the location pointed to by the stack pointer, and the

subroutine 2

call subroutine 1 call subroutine 2

return

Figure 2.7 Nested subroutines

However, there is a problem. With possibly several
return addresses stored in memory, depending on
the ‘depth’ of the nested subroutines, how is a return
instruction to locate the appropriate one to ‘return’
to? The usual method for the orderly storage and
retrieval of return addresses involves an area of
memory called the stack. This area is not different
from any other area of memory - it consists of
storage locations, each with its own address. But the
method of access to this area is different. There is a
special register in the processor called the stack
pointer which contains a memory address, and ac-
cess to the stack area is made only by reference to
the stack pointer. The address currently in the stack
pointer is called the top of stack. Figure 2.8 shows
the situation where the stack contains four bytes of
data (shaded), with the top of stack being the stack
location which has the lowest address.

To store an additional byte on the stack (an opera-
tion called pushing data onto the stack), the address

14

return

memory
locations

____———new top of stack
pushed byteQ

T ———old top of stack

_—————— bottom of stack

Figure 2.9 Pushing data onto the stack

address in the stack pointer is increased by one. This
operation is called popping data off the stack. Note
that after popping a byte off the stack, the location
which contained it is now considered to be an
‘unused’ location above the stack — subsequent

pushes will overwrite whatever data was in that
location.

This symmetric pair of push/pop operations is just
what is required for the storage and retrieval of
return addresses in the nested calling of subroutines.
When a subroutine is called, the current PC contents
(the return address) are pushed onto the stack as
two bytes. The return instruction simply pops the
address off the stack and into the PC register to
effect the required return. Note that the ‘last-in/first-
out’ nature of the stack ensures that the successive
pushes of nested subroutine calls can be followed
by the successive pops of their return instructions,
supplying return addresses in the right order.

2.6 Introduction to system software

System software is the name given to the programs,
subroutines, interrupt service routines, etc., which
are supplied with the hardware of the computer. The
‘naked’ hardware is of little use; consider what hap-
pens when the computer is switched on. In the case
of HEKTOR, the reset control line will be activated,
which simply causes the processor to execute the
‘program’ stored in memory beginning at address
zero (Subsection 2.3.3). If there is no meaningful
program stored there, the processor will not perform
any useful operations. (It will not simply ‘stop’ how-
ever; it will treat the random data as ‘instructions’,
and operate randomly as a result.)

HEKTOR has been designed so that an area of mem-
ory starting at address zero contains a useful
program, called the monitor. The electronic memory
devices used for this area are read-only devices
(ROM), which means that their stored contents can-
not be changed even when the machine is switched
off. Therefore, the monitor program is always ex-
ecuted when HEKTOR is switched on. This program
contains subroutines which enable the keyboard
and TV peripherals to be used for the communica-
tion of data between a human user and the micro-
computer. For example, the machine instructions of
a user program can be keyed in on the keyboad, and
the monitor program will store them in memory.

The monitor enables a human user to use the key-
board and TV screen for a variety of functions related
to the storing, examination, and step-by-step test-
ing of user programs. These various functions are
initiated by commands keyed in at the keyboard.
Section 4 of this manual describes how to use the
monitor. The monitor also performs a number of
‘housekeeping’ functions, such as defining an area
of memory to be used as the stack (Subsection 2.5).

The system software of HEKTOR includes other
programs besides the monitor. (There are monitor
commands which cause these programs to be
executed.) The editor program allows the user to
describe programs in a more convenient way than as

binary-coded instructions. Programs written in as-
sembly language (described in Section 6) can be
prepared, stored and modified by using the editor
commands (Section 5).

The third major component of the system software
is the assembler program, which translates an as-
sembly language program description into its
binary-coded equivalent, ready for execution.

The fourth major component is the BAS/C inter-
preter. It enables you to write, correct and execute
programs in the BASIC language. Finally, there is a
group of application programs, which control par-
ticular types of external equipment connected to
HEKTOR via its edge connector. One such piece of
equipment is the HEKTOR peripheral board, with its
switches and lights, etc.

It was mentioned, at the beginning of this subsec-
tion, that the system software resides in ROM mem-
ory, with addresses starting at zero. Clearly, some of
HEKTOR’s memory must be read/write memory
(known as RAM), in order that user-defined
programs can be stored. There will also be an area of
memory used for the stack.

So some of memory is ROM, some is RAM, and for
some valid memory addresses there is no actual
physical memory installed! A useful way of sum-
marizing what memory exists, what type it is, and
how it is used by the system software, is to construct
a memory map. An outline memory map is shown in
Figure 2.10. Note that the size of each area is
described using the symbol ‘K’. ‘K’ is a convenient
shorthand for the number 1024 (which is 2'°). There
are therefore 2'*=64K different memory addresses.
Note. that some addresses are used to access
peripheral devices (through their interfaces), rather
than to address conventional memory locations.
8155 keyboard
and TV control
A400-A405

7EFF——8FFE /
| |

System RAM
2700-27FF

Applications 1K
ASSEMBLER 3K
EDITOR 1K

Figure 2.10 HEKTOR memory and 1/0 map

MONITOR 3K

15

3 HEKTOR SYSTEM SET-UP

The purpose of this section is to describe the com-
ponents of the HEKTOR system which are supplied
within the package, and those which you will have
to provide yourself. The interconnection of these
components so as to enable HEKTOR to operate is
also described, together with some initial adjust-
ment procedures.

The section then describes the HEKTOR self-test
procedure, in which a system program checks the
operation of each of HEKTOR’s main electronic
subsystems.

Finally, there is a subsection which is designed to
help diagnose the cause of hardware faults. These
faults are often due to incorrect interconnection or
adjustment of the equipment. If this is the case, you
can remedy the fault yourself. If the fault is due to
mechanical or electrical damage to HEKTOR, it may
be returned, using the return slip enclosed with the
equipment.

3.1 Parts checklist

The HEKTOR system consists of several component
parts. Most are included in the package, but you will
need to supply a standard UHF TV set and a mains
plug for the HEKTOR power supply. You will also
need to use the cassette recorder for data and
program storage. Each of these components is
described below.

3.1.1 Components supplied

In the package(s) you receive, you should have the
following components:

® The HEKTOR microcomputer in its case.

® The HEKTOR power supply, consisting of a box
with two cables protruding from it. One is a mains
cable, and the other terminates in a 6-pin DIN plug.
® A cable for connecting HEKTOR toa TV set. It is
a single cable with a coaxial connector on one end
and a ‘phono’ type connector on the other end (see
Figure 3.1).

e (Cables for connecting HEKTOR to a cassette
recorder. There is a single 5-pin DIN plug at one end
and 3 plugs at the other end (see Figure 3.1).

e The HEKTOR peripheral board, which has 8
switches and lights on it and a flat ribbon cable
attached to it.

® A cassette recorder.
® C(Cassettetapes. (These maybe mailedseparately.)

3.1.2 The television set

The user-supplied television set should meet the

16

following requirements:

e |t is able to accept standard British television
signals that are broadcast in the UHF band to the
625-line standard.

® |t has provision for the connection of an external
aerial through a standard coaxial socket.

e It has controls for tuning over the UHF band.
e |t has brightness and contrast controls.

Some television receivers may require adjustment of
the horizontal stability or ‘horizontal hold’ to give a
readable display. On some models, there is an exter-
nal control for horizontal stability, but on others this
control is only accessible through a hole in the
cover, or with the cover off. You should not operate
the set yourself with the cover off; a TV dealer will
usually make the necessary simple adjustment (see
Subsection 3.3.3).

Best results are achieved using the smaller black-
and-white sets with a twelve to fourteen-inch
screen. Larger sets may have to be positioned too far
away from HEKTOR for convenient reading. As
HEKTOR does not generate a colour display, a
colour set is not needed, and its display may be
poorer than that of a black-and-white set.

3.1.3 The cassette recorder

The cassette recorder provided should enable you to
save your own programs on tape and also use pre-
recorded programs we have sent you on cassette. If
you have your own tape recorder you may use it if
you wish. However, the variations in detail between
makes of tape recorders means that there is no
guarantee that you will be successful.

3.1.4 Cassettes

Of the cassette tapes sent to you, one or more will be
blank, for use in storing your own programs. If you
need more than these, the ideal cassettes are the 10
to 20-minute cassettes sold specifically for use with
computers. However, most branded ferric cassettes
are satisfactory, and once a particular cassette has
been proven, it can be re-used with confidence
many times. There is no need for long cassettes —
C60 or shorter types are adequate. Avoid the
cheapest cassettes, as they may not record satisfac-
torily.

3.1.5 Mains supply and plug

The mains plug you use must obviously match the
mains power sockets available. The HEKTOR power
supply is designed to operate from the usual 240 volt
50 Hz mains supply. Either the supply or the plug
should be fitted with a 3 amp fuse. Note that to
operate HEKTOR you will need three mains sockets:
for HEKTOR itself, for the TV and for the cassette
recorder. A multiple outlet or adapters may be useful.

Cassette recorder connecting cables

L
\ ? MIC/Rem a0 AN Zon
I g 2) 0
Q‘ ; $_To HEKTOR

(5-pin DIN plug)

TV connecting cable

Figure 3.1 Cables and plugs supplied with HEKTOR

To HEKTOR
{phono plug) To TV set
(coaxial plug)

HEKTOR MICROCOMPUTER
‘POV\[/ER'

fuse

aenal socket

power supply unit

CASSETTE
RECORDER

mains plug
\ mains adaptor

Figure 3.2 Connections for HEKTOR system components

3.2 Handling precautions

The power supply for the HEKTOR system is
provided by an enclosed unit which contains a
transformer. The transformer reduces the mains vol-
tage and provides electrical isolation, so that HEK-
TOR'’s exposed parts operate at safe voltages. There
is therefore no risk of electrical shock if these parts
are touched. The top-rear panel of HEKTOR slides
open, to enable you to examine its construction, but
touching some of the electronic components, while
in operation, can cause temporary malfunctions.

The HEKTOR microcomputer should stand on a flat
surface, so that it is supported by its feet; otherwise
pressure on the keys could damage the printed-
circuit board. When the case is open keep metal
objects away from the board to avoid accidental
electrical shorts. Equally, moisture, such as spilt
drinks, damp tablecloths, etc, can also cause at least
temporary malfunction.

Some components in HEKTOR become warm in
use, but not dangerously hot unless the normal heat
dissipation in free air is grossly interfered with. So
HEKTOR should not be covered whilst in operation.

3.3 Connecting HEKTOR
components

This subsection explains how the various HEKTOR
components are connected together. Figure 3.2
shows a suggested layout with suitable intercon-
nections. (Note that the cassette recorder and the
peripheral board need not be connected when they
are not being used.)

Do not connect or disconnect the HEKTOR
peripheral board while the power is switched on.
Serious damage can result.

3.3.1 Connecting a mains plug

There are two wires in the mains cable lead from
HEKTOR. These have to be connected to the pins of
the plug as shown in Figure 3.3, as follows:

® The brown live wire to the terminal marked L.

® The blue neutral wire to the terminal marked N.

A 2-pin plug should not be used, and the mains
socket or plug should be fitted with a 3 amp fuse.

3.3.2 Connecting the power-supply unit

Place the microcomputer on a flat surface, ensuring
that there is plenty of room below it for air to cir-
culate through the ventilating slots.

Plug the 6-pin DIN plug from the power-supply unit
into the matching socket in the far right-hand corner
of HEKTOR, next to the power switch. DO NOT
FORCE THE PLUG. There is a matching key and

18

Earth—___

Figure 3.3 A correctly wired 3-pin plug

groove to prevent insertion with incorrect align-
ment. Then plug the power supply into the mains,
and switch on both the HEKTOR power switch and
the mains outlet switch. The red indicator on the
right-hand side of the case should illuminate. If it
does not, switch off immediately and consult Sub-
section 3.5.

Further checks can only be carried out with the TV
set connected.

3.3.3 Connecting the TV set

Check that the TV you intend to use with HEKTOR
will receive the normal broadcast signals. Switch
off, and disconnect the usual aerial cable from the
aerial socket on the TV. With HEKTOR also switched
off, plug the coaxial plug (see Figure 3.1) on the TV
cable supplied into the aerial socket on your TV, and
plug the phono plug on the other end of the cable
into the socket marked ‘TV’ on the back of the HEK-
TOR case. (The second socket on the caseisfora TV
monitor, not a conventional receiver.)

Turn the TV on and allow up to a minute for it to
warm up. Then turn HEKTOR on, so that the red
indicator on the HEKTOR case illuminates. Now
adjust the tuning of the TV set until a stable pattern
of white letters on a dark background appears. Ad-
just the tuning, brightness and contrast controls for
the best picture.

HEKTOR contains facilities for producing sounds
through the TV loudspeaker. The tuning which
produces the best sound may be slightly different
from that which produces the best picture. It is best
to leave the TV tuned to the best picture (and the
volume control turned completely down) except
when actually using the sound generator.

If the picture does not stabilize, it may be necessary
to adjust the horizontal hold control (see Subsection
3.1.2). However, first check that no other tuning
position gives a better picture. HEKTOR is designed
to give the best picture on Channel 36 (592.25
MHz), but other tuning positions will also produce
a picture.

If you have a TV monitor, a higher-quality picture
can be obtained by connecting the direct video
coaxial socket to the TV monitor. This socket is
labelled ‘VIDEQ'. However, if you use a TV monitor
you will not have access to the sound generation
facilities of HEKTOR.

3.3.4 Connecting the cassette recorder

First connect the appropriate one of the two 5-pin
DIN plugs (Figure 3.1) to the DIN socket on the left-
hand side of HEKTOR labelled ‘TAPE’. The three
remaining plugs on the cable go to the cassette
recorder for (a) recording, (b) playback and (c)
remote control of the motor. Use Figure 3.1 to iden-
tify the appropriate plug for each purpose, and then
Figure 3.2 to identify the corresponding socket on
the cassette recorder.

A quick test will indicate if the power connections
for the cassette recorder are correct. Switch HEK-
TOR on, and switch on the mains supply to the
recorder. Now press the PLAY switch on the recor-
der — nothing should happen. Now use HEKTOR's
keyboard and press the |E| key followed by the
key. The cassette recorder motor should
now start, rotating one of the spindles which wind
the cassette tape. If this does not happen, switch off
and check the connections. If necessary, consult
Subsection 3.5. Switch off HEKTOR.

3.3.6 Connecting the peripheral board

On the left-hand side of the HEKTOR microcom-
puter, there is an opening labelled ‘peripheral board'.
The forty connecting pads (twenty above and
twenty underneath) within this opening enable ex-
ternal equipment to connect to the bus of the
microcomputer (Section 2.1). The required connec-
tor is an edge connector attached to a forty-way flat
ribbon cable.

To connect the HEKTOR peripheral board, proceed
as follows. With HEKTOR switched off, gently ease
the edge connector attached to the peripheral board
between the slots on the microcomputer board, so
that the edge connector’s internal metal wipers
make contact with the connecting pads on the
microcomputer board. The edge connector is
symmetrical, so it is physically possible to connect it
upside down. This could cause severe damage. The
correct orientation of the edge connector is obtained
when there is no twist in the flat connecting ribbon
cable and the peripheral board components (in-
dicator lights, switches, etc.) are facing upwards.

A quick test will indicate if the edge connector’s
power connections are making good contact.
Switch HEKTOR on. Press either or both of the but-
tons on the peripheral board marked ‘PL" or ‘PD".
The little red indicator lights (LEDs) on them should
light up. If not, switch off, check the connections,
and consult Subsection 3.5, if necessary.

3.4 HEKTOR self-testing

The system software of HEKTOR includes a self-
testing program, which individually exercises each
of the physical subsystems of HEKTOR, including
the cassette recorder, and peripheral board (if
fitted). This subsection describes how to use the
keyboard and TV display to cause these tests to be
executed in sequence.

Figure 3.4 shows the overall testing scheme. There
are seven groups of tests and, once started up, the
user can cause the next test group in the sequence
to be performed by pressing the key. So the
user need not repeat all tests in order, say, just to test
the peripheral board. After starting the test
sequence, four key pressings will bring the
system to the peripheral board tests. Note also that
the key can be used at any stage to leave the
self-test sequence.

Action Display should show

(switch on)

1 test processor *MONITOR*
and system memory >
2 key [T][RETURN] to RAM 1800
test user RAM
BREAK
' " o, ’ *
3 test all displayable " #8%8& ()" +, —./
characters 0123456789 ;<=2>7?
@ABCDEFGHIJKLMNO
PQRSTUVWXYZ[\]JA-
‘abcdefghijkimno
pgrstuvwxyz{i}~#
4 key any characters (keyed characters displayed)

to test keyboard

BREAK

5 SET RECORD
record test tape

BREAK

6 SETTO PLAY
read back test tape n

n
Y

BREAK

7 test peripheral
board

BREAK

Figure 3.4 HEKTOR
self-testing

end of tests

@I

19

Your HEKTOR system passed these tests before
being sent to you, so any immediate faults revealed
are likely to be due to damage in transit or (more
likely!) due to the equipment being incorrectly con-
nected or operated. If faults become apparent after
a period of successful use, the self-test procedure,
together with the diagnostic information in Sub-
section 3.5, will help you track down the cause.

You should refer to Figure 3.4 in the description of
the individual tests which follows, in order to keep
track of the sequence of tests.

3.4.1 Switch-on tests

When HEKTOR is switched on, a red indicator on
the microcomputer should illuminate. This shows
that electrical power is reaching the microcomputer.

If the display shows *MONITOR* after switch on,
the system has already passed a number of automa-
tic tests. There can be considerable confidence that
the following subsystems are functional:

Microprocessor.

System RAM (stack, etc.).
System ROM.

Much of the TV interface.
The TV itself.

The power supply unit.

If no display occurs, consult Subsection 3.5. If the
message includes RAM ERROR or ROM ERROR,
there is a system memory fault (Subsection 3.5).

3.4.2 User RAM test

As shown in Figure 3.4 the special self-test
sequence is initiated as follows. Following switch-
on, or use of the key, type in
response to the monitor prompt character '>". (The
monitor system program is described in Section 4.)

The first special test is to measure the amount of
usable RAM memory, and display this number. The
message displayed should therefore be RAM 1800.
This number is in hexadecimal (Appendix B) and
represents the amount of memory that HEKTOR
finds to be correctly functioning for both reading
and writing. There are 1800 (hex) bytes of user
memory installed in the microcomputer board.
Therefore, if the displayed number is less than 1800,
there is likely to be a memory fault.

3.4.3 TV interface test

A full test of the TV interface and TV occurs after
starting the self-test sequence, and having pressed
the key once. HEKTOR attempts to display
all the displayable characters, in the format shown in
Figure 3.4. If this display occurs, the TV interface is
fully functional.

20

3.4.4 Keyboard test

This test routine is entered automatically after the
character display (Subsection 3.4.3). Any keys on
the keyboard (except the special [BREAK] [RESET]
and keys) can be used, and the key should be
‘echoed” on the TV display. Any keys not
appropriately echoed may indicate a keyboard fault
(one of the more likely faults, as the keyboard in-
cludes mechanical as well as electronic com-
ponents). Note the effects of the following cursor
movement keys, which affect the position on the
screen of the blinking cursor:

° — up one line.

) - down one line.

. — right one position.

. — left one position.

° — extreme left.

° — top left, with clear screen.

3.45 Recording a test tape

Starting the self-test sequence, and keying
twice, enables a special data pattern to be recorded
on cassette tape. This cassette can then be used in
the next test to adjust the cassette recorder’s volume
control to the most suitable position for future use of
the recorder with HEKTOR.

The message ‘SET RECORD’ will be displayed. You
should place a blank rewound cassette tape in the
recorder, ensure that all connections are correctly
made, and then set the recorder controls to record
(that is, press both REC and PLAY buttons
together).

Keying [RETURN|on the keyboard will now start the
recorder and, after ten seconds, a repeated test data

pattern will be recorded. After a minute or two, use
the recorder controls to rewind the cassette (ready

for reading). Then key [BREAK]| to move on to the
next test.

3.4.6 Reading the test tape

In this test, HEKTOR will endeavour to read the
repeated short blocks of test data that have been
recorded on cassette using the procedure in Sub-
section 3.4.5 above.

On entering this section of the test sequence, the
display will show ‘SET TO PLAY’. You should place
the (rewound) test-data cassette in the recorder, set
its controls to PLAY, and set the volume control to
about half way (if you have no other information
about the likely ‘best’ position). Set the tone control
to half way also. Then key. The tape should
start moving, and after the ten-second delay to allow
for the blank leader, the letters 'y’ or ‘n’ should start
appearing on the screen as each block of data is
played back. Ay’ indicates that HEKTOR has recog-
nized the block as data, and the 'n’ that it has failed
to recognize it as correctly recorded data. If no

character at all appears, HEKTOR has not even
recognized the recording as data. While the tape is
running, adjust the recorder’'s volume control until
the letter 'y’ appears consistently. It is useful to mark
the position where this occurs. Unless you change
your brand of tape, this setting should be satisfac-
tory for future use with HEKTOR. If your first few
blocks of data produced 'n’s, it is worthwhile repeat-
ing the test with the new volume control setting to
see if they are recognized. (The first few blocks are
the ones least likely to be reliably recorded.)

3.4.7 Peripheral board tests

This final test, entered after four key press-
ings in the self-test sequence, tests the individual
hardware subsystems on HEKTOR’s peripheral
board. The tests should only be performed if the
peripheral board is already connected to the
microcomputer. (If not, switch off before connect-
ing and run the entire test program again.)

There is no indication on the TV screen that this test
has started, but some of the eight light-emitting
diodes (LEDs) on the peripheral board might light
up. The pattern of illumination of the LEDs should
match the settings of the switches adjacent to them.
Change the settings of some of the switches and
then press and release the button marked ‘PD’. The
pattern of lighted LEDs should change to match the
new switch settings.

Now press the button marked ‘PL’. The pattern on
the LEDs should change to its opposite: the lighted
LEDs should go off, and vice versa.

This completes HEKTOR's self-test procedure. Key-
ing [BREAK| one more time returns control to the
monitor, which should respond with the prompt ' > .

3.5 Hardware malfunctions

The most likely cause of apparent malfunction of
HEKTOR is that it is either not connected up correct-
ly, or that its behaviour has been misunderstood by
the user! So make sure that these causes are
eliminated before going to the inconvenience of
returning the equipment.

That having been said, hardware faults can occur.
The most likely causes of failure are mechanical,
rather than electrical. Connections may become
worn or dirty, for example. The electronic com-
ponents do not ‘wear out’, but electro-mechanical
ones can — the keyboard switches, for example.

There can be temporary faults with the system.
Besides the obvious example of a poor electrical
contact, electrical interference may occur in extreme
cases. Switching off heavy electrical equipment may
generate mains-borne interference which could
cause HEKTOR to apparently ‘hang-up’. Again, try

to eliminate these causes before deciding that HEK-
TOR has suffered a hardware fault.

In the following subsections, a number of possible
fault conditions are discussed.

3.6.1 Missing or damaged components

If, when you first receive your HEKTOR system,
there are any missing or obviously damaged com-
ponents, you should return it.

3.5.2 Apparent loss of power

If the red LED indicator on the microcomputer board
fails to illuminate when HEKTOR is switched on,
first check that it is not simply the indicator; that is,
does HEKTOR still provide a display, and otherwise
appear to be working?

If not, check the mains socket; does another electric-
al appliance work using that socket? Next, try
replacing the fuses. If the new fuse blows, or HEK-
TOR still fails to respond, return it for repair.

3.56.3 Memory faults

If any of the messages RAM ERROR, ROMO, 1 or 2
ERROR, appear after switch-on, HEKTOR has
detected an apparent memory fault. The same
applies if the memory self-test (Subsection 3.4.2)
displays an unexpected number. This fault may be
temporary, so switch off, check all connections, and
try again. If the fault persists, it may be due to a
socketed integrated-circuit package not seating
properly. So switch off, slide open the panel on the
top of the case, and press gently but firmly on the
socketed components. Then try again. If the fault
still persists, return the system for component
replacement.

3.5.4 Unsatisfactory TV display

If you know that the TV is functional, but tuning
slowly across its range produces no change in
display (at normal brightness/contrast levels), then
the TV is not connected properly, HEKTOR has lost
power, or there is a hardware fault in HEKTOR.

If a picture can be tuned in, but it is a static but
random patchwork of light and dark, try switching
HEKTOR on and off a few times.

If a picture can be tuned in, but it appears to be
skewed across the screen, adjust the horizontal
stability (see Subsection 3.3.3), or try another TV
set. This is not a hardware malfunction on the HEK-
TOR board.

3.5.5 Difficulties with the cassette recorder

Subsections 3.1.3 and 3.1.4 dealt with the use of the
cassette recorder and cassette tapes, Subsection
3.3.4 with the recorder’s connection to HEKTOR,
and Subsections 3.4.5 and 3.4.6 with its setting up.

21

You can check if the test data has been recorded, by
playing this test tape with the recorder disconnected
from HEKTOR. It should sound like a scratchy buzz,
with a rhythm that repeats about once per second.

Remember that faults in this area are much more
likely to be due to the recorder, to poor contacts in
its connection to HEKTOR, or to the cassette itself,
rather than to an otherwise working HEKTOR sys-
tem.

3.5.6 Keyboard faults

If you suspect keyboard faults, check out the key-
board using the test of Subsection 3.4.4. If you type
too fast or press the keys too gently, they may not
register with HEKTOR. But if you cannot get any
response from just one or two keys, there may be a
fault with the key mechanism and it can be replaced.

3.5.7 Peripheral board faults

The tests of Subsection 3.4.7 should reveal any
faults on this board. The multiway edge connector
is likely to be the prime suspect, so try wiping the
connection pads on the microcomputer board with
a clean, dry cloth (not a finger!). If some of the tests
with the peripheral board work, but others do not,
and you have eliminated setting-up or connection
faults, then a hardware fault with this board is likely,
and it should be returned for repair.

22

I1

4 USING THE MONITOR

The monitor is a system program which provides a
convenient interface between a human user and the
HEKTOR microcomputer. The monitor controls the
resources of HEKTOR (principally memory and
interfaces), in response to commands typed on the
keyboard. These commands enable the user to
examine and modify the contents of memory loca-
tions, to save data on cassette and load data from
cassette into memory, and to cause user-designed
programs to be executed under controlled con-
ditions which facilitate program testing.

Section 9 of this manual gives a technical descrip-
tion of the monitor, but in order to enable the best
use of the monitor facilities to be made, an overview
of the monitor's structure and behaviour is also
given here in this section. Extensive use is made of
hexadecimal numbers in monitor commands, for
specifying memory addresses and data values (Ap-
pendix B contains tables for converting hexadecimal
numbers to and from decimal numbers.) As an
example of the interaction between the HEKTOR
user and the monitor, consider the following task.
Suppose the user wishes to know the contents of a
particular memory location in HEKTOR. Without
special equipment, the only way of acquiring this
information is to cause HEKTOR to execute a
program which will display the contents of the loca-
tion on the TV display. Now the monitor is such a
program, but one which is sufficiently general pur-
pose that it will display the contents of any memory
location, and perform a number of other, similarly
useful, tasks as well.

As the monitor is general purpose, how does the
user specify which memory location the monitor is

command

Keyboard

M135C 4

execution of
monitor program

data from
memory

address contents
0000 21
0001 00
135C C9
3000 ?
3001 ?
FFFF =

Figure 4.1 Example of a monitor command

24

to display the contents of? Indeed, howis the ‘mem-
ory examine’ task selected from among the range of
monitor tasks? This is achieved by designing the
monitor program so that it performs tasks in res-
ponse to commands typed at the keyboard. In this
example, the user will specify the ‘'memory examine’
task by keying @ and following it by the address of
the memory location whose contents the monitor is
to display. (This address is an argument of the M
command.) On receipt of this command, the
monitor will display the required information, and
then await a further command.

This is shown schematically in Figure 4.1, where the
participating components of HEKTOR are shown,
together with the data (broad arrows) which passes
between them. The monitor program (which starts
executing automatically when HEKTOR is switched
on) first signifies its readiness to accept a command
by displaying the ‘prompt’ character, >, on the
screen. It then awaits a keyboard command. In this
case, the user types M135C, followed by the
key. This is interpreted by the monitor as
a ‘memory examine’ command, with reference to the
memory location whose address is 135C
(hexadecimal). As shown in Figure 4.1, the memory
of HEKTOR consists of a mixture of ROM and RAM
types of memory device. Each location in memory is
identified by a unique four-digit hexadecimal code
(its address), and contains a piece of data which is
a two-digit hexadecimal code. The fixed codes in
the ROM area of memory are the machine instruc-
tions making up the system software, including the
monitor program itself, whereas the RAM locations
contain variable data. Note that for some addresses,
there is no physical memory installed; HEKTOR has
about 12000 (denary) ROM locations, and about
6000 (denary) RAM locations, whereas there are
65536 (denary) addresses available with four-digit
hexadecimal codes.

display
data >

>M135C
135C: C9

ROM memory

RAM memory

}no memory

In this example, therefore, the execution of the
monitor program, after receiving the M135C com-
mand, causes the contents of the location with
address 135C (hex) to be displayed on the TV
screen. As this is a ROM location, its contents are
fixed and happen to be C9 (hex).

In summary, Figure 4.1 is a diagram in which com-
ponents of HEKTOR (memory and its contents, key-
board and display subsystems) are controlled during
the execution of the monitor program so as to per-
form tasks in response to the users’ keyboard com-
mands. Note that the instructions making up the
monitor program feature twice in the diagram. As
codes are stored in memory, they are available for
inspection, using the M command; when collective-
ly executed by the microprocessor, they cause the
behaviour described above.

4.1 The monitor structure

Figure 4.2 shows part of the HEKTOR memory map
(described in Subsection 2.6), concentrating on the
areas which are particularly relevant to the monitor.
The monitor program itself can be considered as
comprising four main sections stored together in the
lowest-address area of ROM:

® command acceptance;
® command execution;
o (tilities;

® interrupt handier.

Address: RAM memory Address: ROM memory

2700([system 0000| command
parameters acceptance
command
saved status execution)
> monitor
stack - program
27FF utilities
2800 interrupt
oBsD| handler)
User OBGE
RAM)
editor
} etc.
3FFF

Figure 4.2 Monitor structure

Command acceptance is a section of the monitor
which displays a ‘prompt’ message on the TV screen,
and waits for a command to be typed in at the key-
board. When a valid monitor command is received,
the appropriate part of the command execution sec-
tion of the monitor takes over, to perform the reques-
ted action. The utilities are a set of subroutines
which are frequently required by the monitor, other
system programs, and indeed are available for use by
user programs (see Section 9 for details). There are
utility subroutines to detect when a key is pressed,
to display a character on the TV screen, etc. Finally,
the interrupt handler (introduced in Subsection 2.3)

facilitates the testing of programs by enabling the
user to interrupt the execution of a program in an
orderly way to check its status.

The second area of memory of primary interest to the
monitor user is the RAM memory, shown in Figure
4.2. Again, this can be considered as comprising
four sections:

® system parameters;
® saved status;

® stack;

e user RAM.

The system parameter area is the RAM ‘workspace’
used by the monitor. The data stored here is not of
great interest during normal monitor usage, but it
can be modified by the advanced user to extend the
versatility of the utility subroutines (see Section 9).

The saved status area is used to maintain a record of
the state of the system when certain events occur.
The ‘status’ of the system is effectively the contents
of the microprocessor registers, including the
program counter and stack pointer. When a program
is interrupted, for example, if the register contents
are saved, and then restored again after dealing with
the interrupt, resumption of execution of the original
program can occur as though no interrupt had
occurred. Theusercan interrupta programin avariety
of ways, and use monitor commands to examine or
modify the status of the system atthetime of the inter-
rupt, before allowing execution to continue.

The stack area of RAM is defined by the monitor
when it is first executed following switch-on. That
is, the stack pointer is initialized with the bottom-of-
stack address (2800 hexadecimal), which allows a
stack to form using locations with addresses less
than this. In normal usage, therefore, the programmer
need not be explicitly concerned with providing a
stack area for user programs; the monitor-defined
stack is adequate for most purposes.

Finally, the area of read/write memory with
addresses in the range 2800-3FFF (hexadecimal) is
not used by the monitor, and so is entirely available
for user programs and data.

4.2 Monitor behaviour

Figure 4.3 shows schematically how the main sec-
tions of the monitor program work together, in res-
ponse to external events such as keyboard com-
mands, to achieve the various monitor functions.
When HEKTOR is first switched on, or if the
key is pressed at any time, the monitor program starts
executing. After initializing the system parameters
(including definition of the stack area) the com-
mand acceptance routine is executed.

The command acceptance routine displays a ‘>~
prompt character on the screen and waits for a valid

25

switch on
or RESET

—

initialise system parameter;l

commands
B.C.F.L M. P invalid
execute |Q R S T.V X command execute
|‘ one
command | instruction
accept - T
keyboard 1
gl command
execute D execute
editor H G interrupt
program handler
BREAK key?
¥ Y or
execute execute
iy other breakpoint
interpreter program

Figure 4.3 Monitor behaviour

monitor command to be keyed in. The format of
these commands is discussed in detail later, but
there are sixteen basic commands, each identified by
a single character, as shown in Figure 4.3. An un-
recognizable or invalid command causes 'ERROR’
to be displayed, and another command to be
awaited. The sixteen valid types of command split
into two groups. The larger group (of twelve com-
mands) cause the appropriate command execution
routine to be performed, after which the command
acceptance routine is re-entered automatically for
the next command. The commands in this group in-
volve operationssuch asthe display and modification
of data in memory, and the handling of data storage
on cassette tape.

The four remaining commands each involve the
execution of programs other than the monitor, as
shown in Figure 4.3. In one case, E, the editor sys-
tem program is executed (with its own set of key-
board commands, as described in Section b). In the
next case, H, the BASIC interpreter is executed (see
Section 7). The two other commands, G and 1, ena-
ble any program stored in memory to be executed,
whether it is a system program or a user program.
These programs can be interrupted, and the
processor status stored in the saved status area, after
which the monitor is re-entered. In the case of the ‘1’
command, the interrupt occurs automatically after
one instruction is executed. In the case of the G
command, the user can interrupt by using the

key or by using the break-point facility (see
Subsection 4.4.1).

As well as saving the processor register’'s contents in
the saved status area, the interrupt handler also
displays this data on the screen. A typical display is:

PC SP AF BC DE HL |
3104 27EC 1294 0000 ACO1 380A 00B1

The interpretation of the display is that, at the time
the interrupt occurred, the program counter (PC)

26

contained the (hexadecimal) address 3104, the
stack pointer (SP) contained the address 27EC, the
accumulator (A) contained the byte 12
(hexadecimal), and the flag register (F) the byte 94.
The six general-purpose registers (B, C, D, E, H, L)
contained 00, 00, AC, 01, 38, OA, respectively. Fin-
ally the interrupt mask register (I) contained B1
(even though this is displayed as 00B1).

Because the processor registers are loaded with the
saved status information immediately before the G
and 1 commands are executed, user programs can
be tested easily. Program execution can be interrup-
ted at any stage, the state of the processor and mem-
ory examined (using other monitor commands), and
execution resumed, as though no interrupt had
occurred.

4.3 Monitor command format

The command acceptance routine displays a prompt
(the ‘>’ character) and then awaits a monitor com-
mand. The command, as typed by the user, must
conform to the general format:

Command character Argument list Terminator

The command character must be one of B, C, E, F,
G H L MPQR,STVW,X or1. This identifies
the command type; for example, ‘C’ is the command
character which causes data to be cop/ed from one
area of memory to another.

The argument list may be omitted for some com-
mands, but if present, consists of up to three num-
bers separated by commas. The numbers are inter-
preted by the monitor as hexadecimal numbers (see
Appendix B) and so the digits 0-9, A—F can be used.
For example, the command C3000,300F,3100 is a
copy command with three arguments. For this com-
mand the three numbers refer to 16-bit memory
addresses, and the effect of the command is to copy
the sixteen bytes of data stored in the area of mem-
ory whose addresses are 3000 to 300F inclusive, to
the area of memory whose lowest address is 3100.

The arguments refer either to 16-bit or 8-bit codes,
depending on the command, and the string of digits
typed are interpreted according to whether an 8-bit
or a 16-bit argument is expected. Normally, four
hexadecimal digits are used to specify a 16-bit
quantity, and two for an 8-bit quantity, but if fewer
digits than required are given, leading zeros will be
automatically implied. If more digits than necessary
for an 8-bit argument are supplied, the leading digits
will be ignored. (More than four digits will cause
an ERROR display, in any case.) For example,
C0,10,3000 is an acceptable equivalent to
C0000,0010,3000, and F3000,3FFF,1234 will
produce the same effect as F3000,3FFF,34.

The third element of a keyed-in command is the
terminator. The command is accepted upon the
receipt of a terminator, and the command executed

immediately (assuming that it is a valid command).
The terminator can be supplied in any of four ways:

e the key;

e the |1]|key;

e the|] |key;

e the [P]key, while the key is held down.

For most commands, any of these terminators can be
used with no alteration to the effect of the com-
mand. (The[RETURN]key is probably easiest to use.)
The terminator has a special effect only for
the P command (see below), and the and
terminators only for subsidiary commands associ-
ated with the M and X commands (see below).

Finally, typing errors can be corrected while typing
in a command, by using the key. Characters are
‘echoed’ on the TV screen as they are typed in, and
the key causes the previous character to be
‘rubbed out’. Note that no further corrections to the
command are possible after the terminator key is
pressed.

4.4 Monitor commands

In the description of individual commands given
below, the symbols <A1 >, <A2 >, etc., are used to
denote hexadecimal arguments, and <T > todenote
the use of one of the terminator characters listed in
Subsection 4.3.

441 Break-point command

B <T> removes any break-point previously set;
B <A> <T> setsabreak-pointataddress <A>.A
break-point can be inserted in a user program at the
address of the operation code of any instruction. The
break-point behaves as an interrupt. That is, when
execution of the program reaches the break-point,
execution is suspended (and the monitor re-
entered) just as though the key has been
pressed at that moment. Only one break-point can
be inserted at a time; a second use of the B command
will remove any previous break-point before insert-
ing the new one. The break-point is automatically
removed when the break occurs.

Because the insertion of a break-point involves the
replacement of the byte at the specified address by
a one-byte restart instruction, care must be taken to
insert a break-point only at a location containing the
operation code part of an instruction, and not one of
its operand bytes. By combining the use of the B
command with the use of the G and 1 commands,
arbitrarily large or small segments of a user program
can be executed, and the effects examined, segment
by segment.

4.4.2 Copycommand

C<Al>, <A2>, <A3> <T> copies data from
one area of memory to another.

The data stored in the area of memory whose
addresses run from <A1> to <A2> inclusive is
copied, byte by byte, into an area of RAM memory
of identical size, but whose lowest address is
<A3>.

For example: C3800,3808,3801 ‘shifts’ a block of
nine bytes, stored in the area 3800-3808, along into
the area 3801-3809. C3800,3808,37FF ‘shifts’ the
block in the opposite direction.

4.4.3 Editor entry command

E<T> causes execution of the editor system
program. The editor system program is described in
Section 5.

4.4.4 Fill command

F<Al>, <A2>, <A3> <T> fillsall locations in
an area of memory with a particular byte.

All locations in an area of RAM memory, whose
addresses run from <A1 > to <A2> inclusive, will
have the data byte <A3 > stored in them. Note that
<A1> and <A2> will be four-digit hexadecimal
numbers, representing 16-bit addresses, whereas
<A3> is a two-digit hexadecimal number,
representing the 8-bit data.

For example: F2800,3FFF,00 will fill the whole of
the user RAM area with the data byte 00.

445 Gocommand

G <T> causes execution of instructions starting at
the address specified by the saved PC status.

G <A> <T> causes execution of instructions
starting at <A>.

The saved processor status was described in Sub-
sections 4.1 and 4.2. Execution of the G command
involves setting all the processor registers to the
values specified by the saved status. If an argument
<A> is specified in the G command, it is this
address which is loaded into the program counter
register. The processor then begins executing in-
structions, starting with the one stored in the loca-
tion now addressed by the program counter.
Execution will continue automatically until interrup-

ted by a break-point, the |[BREAK|key, or the |RESET

key.

For example: G3000 will begin execution of a user
program stored in RAM, beginning at address 3000.
G1B38 will execute one of the application programs
of HEKTOR's system software (stored in ROM).

4.4.6 High-level language (BASIC)
command

H <T> causes execution of the BASIC interpreter.
It will be followed by the display ‘'HEKTOR BASIC
INTERPRETER’, and the BASIC prompt ‘*'. HEK-
TOR will expect any subsequent commands to come
from the BASIC command mode (see Section 7).

27

447 Load-from-tape command

L <T> causes data stored on cassette to be loaded
into RAM memory. The immediate effect of this
command is to cause the message ‘SET TO PLAY' to
be displayed on the screen. At this point, the user
should ensure that the appropriate cassette (fully
rewound) is placed in the properly connected
cassette recorder, and the recorder controls set to
the playback position. When this setting up of the
cassette recorder has been completed, pressing the
key causes HEKTOR to start the recorder
and start searching for data recorded on the cassette.
If data is found, it is loaded into memory (the
addresses of the locations into which the data is to
be loaded are also recorded on the cassette). Com-
mand execution then ceases with the power
removed from the cassette recorder.

If data is found, but a tape-reading error was detec-
ted, the loading is aborted and ‘ERROR’ is
displayed. (Data is recorded on tape by a method
which enables errors to be detected.)

If no data is found, searching will continue in-
definitely unless aborted by the use of the|BREAK|or

keys.

4.4.8 Memory modify command

M <A > <T> enables the contents of memory loca-
tions to be examined and modified.

This command displays the contents of the memory
location whose address is <A >.

For example, if the byte 56 (hexadecimal) is stored
in the location whose address is 3000
(hexadecimal), the command M3000 will cause the
display: 3000: 56. After displaying the contents of
the addressed location, the monitor re-executes its
command acceptance routine, to accept a subsidi-
ary command from the user. This subsidiary com-
mand is expected to be of the form: <T >, by itself;
or<A><T>.

If an argument is specified, this is interpreted as a
replacement data byte for the addressed location,

and the appropriate replacement is performed. What
happens next depends on which terminator <T>
was used in the subsidiary command. If the ter-
minator is[RETURN] (or [CTRL}-[P]), this indicates the
end of the whole M command. If the terminator is[|]
the contents of the location with the next higher
address is displayed, and a new subsidiary com-
mand awaited, as before. If the terminator is[], the
same thing happens, but with respect to the next
lower address.

Thus, using a single M command, and a number of
subsidiary commands, the user can scan up and
down over an area of memory, examining the con-
tents of individual locations and changing some of
them if desired. An example of the use of the M
command is givenin Table 4.1, where the keys typed
are shown on the left, the effects on the display are
in the middle, and a comment is made on the right.

449 Printcommand

P<A1>, <A2> <T> displays the contents of the
range of memory locations specified.

This command displays the contents of the locations
in memory, whose addresses run from <A1> to
< A2 > inclusive. Thedisplay formatis compact, with
up to sixteen bytes per line, enabling the contents of
upto256locationstoallappearonthescreenatonce.
Each line of data bytes is preceded by the address of
the location of the first byte on that line.

For the P command only, if the [CTRL]-[P] terminator
is used, the data is not displayed on the screen, but
sent to the serial line interface instead. This is useful
if a printer, for example, is connected to the serial line
socket (see Sections 8 and 9 for details).

4410 Query command

Q<Al1>, <A2>, <A3> <T> searches an area of
memory, seeking a match with a particular data byte.

<A3> is an 8-bit code, and the area of memory
whose addresses run from <A1> to <A2> in-
clusive is searched in that order, seeking a stored
byte to match <A3>.

Table 4.1 Use of the M command
Keys Display Comment
[o][0][0][RETURN >M3000 Contents of addressed
3000:56 location = 56(hex)
[B] 3000:66 AB Subsidiary command: contents
(a]BI0] 3001:00 become AB(hex); move to
next location
] 3001:00 No change to 00 byte;
3002:F3 move to next location
T] 3002:F3 24 Change F3 to 24; move back to
3001:00 previous location
RETURN 3001:00 FF Change from 00 to FF;
> exit from M command

28

If a match occurs, the search terminates with a
display of the address of the first location containing
< A3>.If no match occurs within the specified area,
the search terminates with no address display.

4.4.11

R <T > connects power to the cassette recorder, to
allow rewinding of cassettes.

Rewind command

The cassette recorder controls are normally disabled,
as HEKTOR uses the ‘REM’ cable to switch off the
power to the cassette recorder. Following the R
command (as for the other cassette commands: L, S,
V), the power is switched on to the recorder. In the
case of the R command, however, no other action
occurs; the user is free to use the recorder controls
as desired. The main use of the R command is to
rewind cassettes following the saving or loading of
data.

After the desired rewinding has occurred, keying

RETURN]| will remove the power from the recorder

again, to complete the R command execution.

4412 Save-on-tape command

S<Al1>,<A2> <T> causes the data in the
specified area of memory to be saved on cassette
tape.

The immediate effect of this command is to cause
the message ‘'SET RECORD’ to be displayed on the
screen. At this point, the user should ensure that the
fully rewound cassette which is to receive the data
is placed in the properly connected cassette recor-
der, and that the recorder controls are set to the
record position. When this setting up of the cassette
recorder has been completed, pressing the
key causes HEKTOR to start the recorder and send to
it the data stored in the area of memory whose
addressesrunfrom <A1 > to < A2 > inclusive. When
all the data has been sent, power isremoved from the
recorder and command execution is complete.

Details of the format of data storage on cassettes are
given in Section 9, but a summary is as follows.

HEKTOR starts the tape moving, but waits ten
seconds before recording data. This is to take ac-
count of the blank ‘leader’ tape in most cassettes.
Then the addresses <A1 >, <A2> are recorded to
enable subsequent L commands to load the data
into the appropriate area of memory automatically.
The data bytes themselves are then recorded. Finally
an error-detection code is recorded, called a check
sum.

It is good practice, immediately after saving data on
cassette, to rewind the cassette (using the R com-
mand) and then verify it (using the V command). In
this way, any recording errors will be detected
before the data which is to be saved is lost. The data
can then be re-recorded if necessary.

4413 Test command

T<T> causes HEKTOR to test each of its main
subsystems.

These tests are described in Subsection 3.4.

4414 Verify tape command

V <T> verifies that the data recorded on a cassette
tape is capable of being loaded into memory.

Command execution for the verify command is very
similar to that for the load-from-tape command (L).
The only difference is that any data read from tape is
not loaded into memory. The purpose of this com-
mand is to check that any subsequent L commands
will have a high probability of success.

A successful verification is indicated by the display
of the monitor prompt, and by the absence of any
error messages.

4.415 BASIC re-entry

The BASIC re-entry command W<T> causes a
transfer to the BASIC interpreter without deleting
any BASIC programs previously stored. (This is
called a ‘'warm start’, hence the ‘W'.) It is principally
intended to help recovery from any error occurring
while using BASIC which results in a return to the
monitor. In such circumstances, returning to BASIC
using the monitor's H command would delete any
BASIC program stored.

4416 Register examine/modify command

X<T> causes a display of the saved status, and
enables modification of this data.

The saved status is described in Subsections 4.1 and
4.2,

The X command causes a display of the saved regis-
ter contents in the same format as that which occurs
following the interrupting of a user program.

After displaying the saved status, the display of the
first register’s contents (those of the PC register) is
repeated, for example: PC: 3010.

The monitor then re-executes its command accep-
tance routine, to accept a subsidiary command from
the user (as for the M command). This subsidiary
command is expected to be of the form: <T>, by
itself, or <A> <T>.

If an argument is specified, this is interpreted as a
16-bit value, which replaces the old value in the
saved program counter. What happens next
depends on which terminator <T > was used in the
subsidiary command. If the terminator is
(or [CTRLIP) this indicates the end of the whole X
command. If the terminator is[| |, the contents of the
next saved register are displayed, and a new subsidi-
ary command awaited. (The next register after the

29

Table 4.2 Use of the X command

Keys used Effect on display Comment
RETURN >X Display of saved status;
PC SP AF BC DE HL | repeat of contents of
3104 27EC 1294 0000 ACO1 380A 00B1 PC register.
PC: 3104
[8]1[1] PC: 3104 3188 Subsidiary command; new
SP: 27EC contents are 3188; move to
next saved register.
1] SP: 27EC No change to contents of
AF: 1294 SP register; move to AF
register pair
14T AF: 1294 FF94 Change saved A register
SP: 27EC contents from 12 to FF;
no change to F register;
move back to SP register.
RETURN SP: 27EC 27FE Change saved SP value to
27FE; exit from X command.
>

PC is the stack pointer SP.) If the terminator is ,
the same thing happens, but with respect to the
previous register. Note that as there is no register
previous to the PC, and no next register after the |
register, the use of and respectively simply
repeats the display of the current register’s contents,
in these cases.

Thus, using a single X command, and a number of
subsidiary commands, the user can scan backwards
and forwards across the saved status data, examin-
ing the contents of each, and changing some of
them if desired. Note that the contents of the 8-bit
registers (A, F, B, C, D, E, H, L, and |) cannot be
individually changed; the argument <A > is treated
as a 16-bit code (4-hexadecimal digits), which is to
replace the saved contents of a register pair. For
example, typing 12AB following the display, BC:
OOFF, will change the saved B register’'s contents
from 00 to 12 (hex) and the saved C register’s con-
tents from FF to AB (hex).

An example of the use of X command is given in
Table 4.2, where the keys typed are shown on the
left, the effects on the display are in the middle, and
a comment is made on the right.

4417 Single-step command

1 <T> causes execution of the single instruction
stored at the address specified by the saved PC
status.

1 <A> <T> causes execution of the single instruc-
tion stored at <A >.

Command execution for the single-step command is
very similar to that for the go command (G). The
only difference is that, for the 1 command, execution
of the specified program is automatically interrupted
after one instruction has been executed. (For the G
command, execution continues until a user-

30

supplied interrupt or a break-point is encountered.)
The interrupt handler, as for other interrupts, causes
the new saved status to be displayed, to round off
the single-step operation.

5 USING THE EDITOR

The editor is a system program which acts as an
interface between a human user and the HEKTOR
microcomputer, like the monitor program. I, too,
responds to commands typed on the keyboard. But,
unlike the monitor, it deals with /ines of text, rather
than hexadecimal data. Lines of text stored in mem-
ory can be examined or modified, and saved on or
loaded from cassette tape. If the lines of text
represent an assembly language program (the main
use for the editor), they can be translated by the
assembler program (Section 6) into a program of
machine instructions, which can then be executed
using the testing facilities of the monitor program
(Section 4).

Figure 5.1 is an example of the use of the editor to
store lines of text in the text buffer. The | command
(for ‘insert’) is used in response to the editor’s
prompt character ' #°. The subsequent characters
keyed in are not only echoed on the screen, but are
stored in the text buffer as a line of text. The com-
mand |10 means ‘insert after line number zero’, and so
the line of text is line number 1. The key
signifies the end of line, and the editor is then ready
to accept asecond line, and so on. Other editor com-
mands enable the user to manipulate whole lines of
text, by referring to them by their line numbers.

The individual characters are stored in the text
buffer, using one RAM location per character, with
the ASCII coding scheme (Appendix C) being used
to represent characters as two-digit hexadecimal
codes. This is the main difference between the editor
and the monitor. The actual hexadecimal codes and
the actual memory addresses used for the storage of
character data do not have to be known to the editor
user; the editor program performs all the necessary
conversions and allocation of storage. The user is

| command

keyboard

FRED v

storage of
text in memory

execution of
editor program

concerned only with lines of characters and the
associated line numbers (which, for added con-
venience, are decimal numbers).

5.1 The editor structure

Figure 5.2 shows part of the HEKTOR memory map
(described in Subsection 2.6), concentrating on the
areas which are particularly relevant to the editor.

Address: RAM memory Address: ROM memory

2700 0000 monitor
system RAM 0B5D
27FF OB5E| command
2800 acceptance
text buffer cormrmand
(variable length) execution editor
program
interrupt
1018 handler
to1¢ assembler
etc

Figure 5.2 Editor structure

The editor program consists of three main sections,
stored together in the area of ROM just ‘above’ the
monitor program:

® command acceptance;
® command execution;
® interrupt handler.

Command acceptance is a section of the editor
which displays the editor ‘prompt’ message on the
TV screen, and waits for a command to be typed in
at the keyboard. When a valid editor command is
received, the appropriate part of the command
execution section of the editor is activated, and it
performs the requested action. The interrupt handler
(introduced in Subsection 2.3) enables the
interrupt key to be used to return to the command
acceptance routine; it is therefore a different routine

F
R
E
D

Figure 5.1 Example of editor command

display #10
) 0001: FRED
data 0002:
RAM memory
used as text buffer

31

from the one used by the monitor program. The
editor also uses some of the monitor’s utility routines
(see Subsection 4.1), those which handle the TV,
keyboard, and cassette interfaces, for example.

Figure 5.2 also shows the way in which the editor
program makes use of the RAM memory. The system
RAM is used as a ‘workspace’ by the editor, and as
a stack area. But of main interest to the editor user is
the text buffer, which is the area of RAM where the
lines of text are stored and operated on by the editor,
in response to editor commands.

Text buffer:

line no. text characters
first line|] 0001 -«— up to 50 characters —»
0002 -— " —
0003 -— " o
current line («})] 0010 <*— " —
last line (/)| 0046 <w— " —>
unused RAM memory

Figure 5.3 The text buffer

Figure 5.3 shows the structure of the text buffer in
more detail. The text buffer will contain a variable
number of /ines of text, each of which consists of a
line number followed by a variable number of
character bytes. For example:

0010 THIS IS A LINE

is a line of text, whose line number is 10 (denary),
and which contains fourteen characters of text, in-
cluding three ‘space’ characters. When stored in
RAM, this line of text will occupy seventeen
consecutive locations. Two locations are used to
contain the numeric code for the line number,
followed by the fourteen locations containing
character codes, and the last location contains the
zero byte to indicate the end of the line. (The charac-
ter codes used are the standard ASCII codes — Ap-
pendix C.)

The lines of text are themselves stored consecutively
in the RAM area whose lowest address is 2800
(hexadecimal), and the line numbers of consecutive
lines increase consecutively, as shown in Figure 5.3.
Note that, although line numbers are shown as four-
digit numbers, these are denary numbers, unlike the
four-digit hexadecimal addresses of the monitor.
The line numbers, therefore, run from 1 to a theo-
retical maximum of 9999.

The editor commands enable the character text in a
line or sequence of lines to be displayed, modified,
saved on cassette, etc., and the user specifies which
lines by reference to the decimal line numbers. As an
added convenience, the editor keeps track of two
special lines, the /ast line and the current line, as
shown in Figure 5.3. The user may refer to these

32

lines by the special symbols ‘/" and “." respectively,
instead of by their actual line numbers. For example,
the editor command P1,/ causes a display of all
lines, from line number 1 to the last line in the text
buffer. Because the number of lines in the text buffer
is continuously changing as new lines are inserted
or existing lines deleted (with a consequent renum-
bering of lines to keep the line numbers
consecutive), the ability to use "." and */’ is useful.

5.2 Editor behaviour

Figure 5.4 shows, schematically, the relationship
between the components of the editor program
(command acceptance, command execution, and
interrupt handler), and the twelve types of editor
command. The editor is entered from the monitor
program (using the monitor's E command) and the
command acceptance routine is activated. An im-
portant point to note is that the editor does not
‘clear’ the text buffer when entered from some other
system program. Instead, it works out how much of
the text buffer area of RAM contains data which fits
the ‘lines-of-text’ format described in Section 5.1
above. This enables the user to use the monitor or
assembler system programs and return to the editor
with the text in the text buffer undisturbed (provided
the user has not deliberately altered the contents of
memory in the text buffer area by use of the monitor
M command, for example).

execute
monitor
program

M command

commands invalid
D.K L. P,QRS,V, command

execute _ accept execute
command e keyboard] command

command

—_————
text T
Y
Al E BREAK

execute execute
assembler y interrupt
program executes BREAK handler

command

text |

Figure 5.4 Editor behaviour

The command acceptance routine displays the
editor prompt character ‘#’ and awaits a command
from the user. (The format of commands, and their
detailed descriptions, are given later.) The twelve
types of command split into two groups. The larger
group,the D, K, L, P, Q, R, S, Vcommands, as shown
in Figure 5.4, cause the appropriate command
execution routine to be executed, after which the
command acceptance routine is re-executed

automatically. These commands enable existing
lines of text to be deleted, displayed, and saved on
or loaded from cassette.

Of the remaining four commands, the M and A com-
mands cause transfers to the monitor (Section 4)
and the assemb/er (Section 6) system programs. The
| and E commands are the only ones which enable
new text to be typed into the text buffer. The | com-
mand enables complete new lines of text to be inser-
ted between any two existing lines in the text buffer,
whereas the E command allows modification to ex-
isting lines on a character-by-character basis. The
command execution routines for these two com-
mands accept text information as typed on the key-
board, and so the interrupt key is used to
indicate when command execution should cease, as
shown in Figure 5.4.

The command acceptance routine displays the
editor prompt ‘#’, but it also displays one of three
additional messages in certain circumstances.
‘ERROR’ indicates that the command just typed was
unrecognizable orinvalid. 'NO TEXT" is simply infor-
mative; the text buffer is ‘'empty’. ‘'NEARLY FULL' is
a warning message that the size of the text buffer is
approaching that of the available RAM memory. It
first appears when there is room for about 150
additional characters of text.

5.3 Editor command format

Each of the editor commands, as typed by the user
on the keyboard in response to the editor prompt ‘#,
has the same general form, namely:

Command character Argument list Terminator

The command character identifies the type of com-
mand and mustbe oneof A, D, E, |, K, L, M, P, Q, R,
S, V. The argument list is omitted for some com-
mands, but if present, consists of up to three argu-
ments, using a comma separator. The arguments
supply additional information about the command;
for example the command $2,10 has two argu-
ments, each of which refers to a line number. This
command causes the lines of text in the text buffer,
whose line numbers range from 2 to 10 (decimal)
inclusive, to be saved on cassette.

The terminator information, which indicates that the
user has finished typing the command, can be
supplied in any of four ways:

® keying ;

o keying[l];

® keying ;

e keying [P], with the key held down.

For many commands, any of these terminators can

be used, and |RETURN|is probably most convenient.
For some commands, however, the different ter-
minators have slightly different effects. For example,

using [CTRL]{P] with the P command causes lines of

text to be ‘printed’ via HEKTOR's serial line interface
rather than on the TV screen. Where differences be-

tween , , and exist, refers to
the current line, to the next line, and | 1] to the
previous line in the text buffer. (These differences
are explained with respect to the individual com-
mands, in Subsection 5.4.)

Returning to the arguments in the command, what
meaning is attached to them? Usually, they refer to
line numbers, specifying either a single line of text
(one argument used) or arange of consecutive lines
(two arguments used). For example, D3 causes
deletion of line number 3 only, whereas D3,7 causes
deletion of all lines in the range 3 to 7 inclusive.

The special symbols . and ‘/’ can be used in argu-
ments, where they refer to the current and /ast line
respectively, as described in Subsection 5.1. The
actual line numbers that these symbols refer to will
change, as editor commands are executed. For
example, if there are 12 lines currently in the text
buffer and a new one is added, using the | command,
to make 13 lines, the editor itself will change the
value assigned to */' from 12 to 13. Similarly, the
current line “." is updated after the execution of each
command to be the line number of the line of text last
processed. For example, P1,10 will cause *." to be set
to 10. (The detailed effects on the current line num-
ber are discussed below, for each command.) Note
that, whenever lines are inserted or deleted, the lines
are. renumbered automatically by the editor to
preserve the consecutive-numbering scheme. The
values of *." and '/’ are updated accordingly.

As an additional convenience, a limited amount of
arithmetic is allowed with line-number arguments.
The current or last line can be specified, offset by a
number of lines. For example, D.-1, .+1 has the ef-
fect of deleting three lines: the previous line, the
current line, and the next line.

When line numbers are specified which are outside
the range of lines currently in the text buffer, the
editor automatically truncates them appropriately.
For example, P1,9999 is equivalent to P1,/.

If a line-number argument is omitted where one
would normally be expected, the editor takes the
current line to be the implied argument. Thus D. is
equivalent to D by itself. This facility is convenient,
but should be used with caution.

For two commands, arguments other than line num-
bers are required. In these cases the argument
begins with the "\’ character, used as a separator
instead of a comma. For the A command, which
causes the assembler system program to be
executed, there are a number of options available.
These are discussed in Subsection 6.5.5, but an
example of this command is A\L\S. For the Q com-
mand, which searches lines of text for the occur-
rence of a particular string of characters, the string is
specified as an argument thus: Q1,10\FRED.

33

Finally, typing errors can be corrected at any stage
of keying in a command up to the keying in of the
terminator. The characters keyed in are ‘echoed’ on
the screen, and use of the key will delete the
previous character.

5.4 Editor commands

Each of the twelve editor commands is described
below, with the symbois <A1>, <A2>, etc,,
denoting arguments, and <T > denoting one of the
terminators discussed in Subsection 5.3 above. The

effect on the current line value, symbolically *.’, is
also included.

5.41 Assembler entry command

A<Al> <A2>...<T> causes execution of the
assembler program.

This command can have several arguments, each of
which is an assembler option. Each argument is of
the form '\’ followed by a single character which
specifies the option. (For details, see Subsection
6.5.) The assembler usually leaves the text in the text
buffer intact, so re-editing of the existing text,
following assembly, is possible.

For example, A\ LAS\T\M\W is the command with
all options specified.

5.4.2 Delete command

D<A> <T> deletes the line specified by <A >.
D<A1>, <A2> <T> deletesthelinesin therange
<Al>to <A2>.

This command deletes whole lines from the text
buffer, following which all remaining lines are
renumbered to retain consecutive numbering. The
current line number is updated so as to refer to the
line of text following the block of lines deleted.

For example, if the text buffer contains:
0001 TOM
0002 DICK
0003 HARRY,

the command D1,2 will leave the text buffer con-
taining 0001 HARRY, with the current line number
having the value 1.

5.4.3 Edit line command

E<A> <T> edits individual characters in the line
specified by A.

Execution of this command enables individual
characters to be changed, inserted or deleted in the
specified line of text. The line is first displayed in its
current state, with the cursor (the blinking under-
fine) pointing to the first character in the line.

The command acceptance routine is then re-entered

34

to accept a subsidiary command, which may be any
of the following:

® |[BREAK]indicates termimation of the E command,
and any changes made to the current line since it
was last saved are ignored.

e [RETURN]| (orlCTRLHE]) saves the line in its cur-
rent state, and displays it again for any further edit-
ing.

° saves the line and displays the previous line
ready for editing.

L saves the line and displays the next line, ready
for editing.
° moves the cursor to the next character on the
right (unless it is currently pointing to the fiftieth
character).

° deletes the previous character to the left, and
the cursor moves left to remain pointing to the cur-
rent character (unless itis currently at the start of the
line).

® Any other character keyed in is inserted at the
cursor position, and the cursor moves right to remain
pointing to the current character.

After accepting a subsidiary command and perform-
ing the requested action, a new subsidiary com-
mand is awaited (unless is keyed). The cut-
rent line is set to be that of the last line displayed.

It is not easy to provide a compact example of line-
editing, because of the close and dynamic relation-
ship between the subsidiary commands and the
display. It is recommended that users gain an
appreciation of the power of this command by ex-
perimentation for themselves!

5.4.4 Insert command

| <A> <T> enables insertion of lines of text after
the line specified by A.

Command execution begins with a prompt message
which is the line number of the lines of text to be
inserted. This first line number will therefore be one
more than that specified by <A>.

A subsidiary command is then awaited, which is
expected to be of the form: <textcharacters> < T >.

The typed text is ‘'echoed’ on the screen, and typing
corrections (using the key) can be made. When a
terminator <T > is keyed, the line of text is inserted
into the text buffer, and the current line number
becomes the line number of this line. Then a new
prompt message (the line number of the next line) is
displayed, and a new subsidiary command awaited.

If the user does not wish to insert any more lines of

text, keying |BREAK| will terminate the | command
execution immediately, without inserting the line

corresponding to the last prompt.

Note that because the | command inserts lines after
the line specified by <A >, there has to be special

provision for inserting lines at the start of the text
buffer. For this command only, the form I0<T> is
allowed, and this command enables line-insertion
before line 1.

It should also be noted that line lengths may not
exceed fifty text characters. Any additional text
characters typed are simply ignored.

An example of insertion is shown in Table 5.1. After
this command is executed, the text buffer will have
had two lines of text inserted, and, after the
automatic renumbering, these will be lines 21 and
22. The current line (symbolically *.") will be 22, and
the value of */" will have been increased by two.

5.4.5 ‘Kill' command
K<T> deletes all lines of text in the text buffer.

This command sets the current and last line in-
dicators to zero. This means that following a K com-
mand, only the |0 and L commands will be meaning-
ful.

The use of the K command is recommended when
first using the editor during a session. It is conceiv-
able that, by a freak, the random data in the text
buffer area could appear to be valid lines of text.
Remember that the editor never ‘kills’ the text buffer
automatically.

5.4.6 Load-from-tape command

L <T> appends lines of text saved on cassette to the
text buffer. Command execution for this command
begins with the prompt message ‘SET TO PLAY".
The user should place the rewound cassette, con-
taining the lines of text to be loaded, in the cassette
recorder and set its controls to PLAY.

Keying |RETURNjwill cause the tape to start moving,
and any lines of text found on the tape will be loaded

into the text buffer after the current last line. If the
tape does not appear (to HEKTOR) to contain valid
text data, it will continue to search the tape in-

definitely. (Use of the |BREAK| key will abort the
search, if necessary.)

Iif the loading is successful, there is an automatic
return to the command acceptance routine. If some
loading has occurred, but a reading error is detected,
'ERROR’ will be displayed. In these circumstances
the text buffer may include some, but not all, of the
lines stored on tape. The L command leaves the cur-
rentline ".” unchanged, but the last line */* is updated
according to how many lines of text were success-
fully loaded.

Note that the lines loaded from tape will be renum-
bered automatically, to take account of the fact that
they have been appended to the text buffer. Their
line numbers at the time they were saved on tape are
ignored.

Note also that attempting to use the editor’s L com-
mand with cassettes which were recorded using the
monitor program’s S command (or vice versa) will
cause unpredictable results!

5.4.7 Monitor entry command
M <T> returns to the monitor system program.

This command causes execution of the monitor
program (Section 4). The response to the command
is, therefore, the display of the monitor prompt
character ' >".

Note that, on subsequent re-entry to the editor, the
existing lines of text in the text buffer will be intact,
unless monitor commands to alter the data stored in
this area of memory have explicitly been used.

5.4.8 Print command

P<A> <T> displays the specified line of text.
P<Al1>, <A2> <T> displaysthelinesintherange
<Al>to <A2>.

This command causes a display of the line(s) of text
specified by the line-number arguments. For this
command, the different terminators <T > have dif-
ferent effects.

If <T> is|RETURN]|, there is simply a display of the

Table 5.1 Use of the | command
Keys used Display Comment
120 [RETURN #120 Execute | command:
0021 line-number prompt
EDITING [RETURN | 0021 EDITING Subsidiary command:
0022 insert ‘EDITING’ line;
move to next line
IS FUN [RETURN 0022 IS FUN Subsidiary command:
0023 insert ‘IS FUN' line;
move to next line
BREAK 0023 End of insertion:
exit from | command
#

35

lines specified. If <T> is [CTRL}{P] the textual in-
formation is sent to the serial line interface, instead
of the TV interface.

If <T>is , the line(s) displayed are those with
line numbers which are one /ess than those specified
in the arguments. If <T> is , the lines displayed
are those with line numbers which are one more
than those specified. This enables the compact com-
mands P[]]and P[1]to display the next line and the
previous line respectively, with respect to the current
line.

The P command affects the current line indicator,
and the current line becomes the last one displayed
before execution of the P command terminates.

5.4.9 Query command

Q<A1>, <A2>,<A3> <T> searches arange of
lines, seeking a match with a specified character
string.

For thiscommand, < A3 > consists of the '\" charac-
ter followed by a string of text characters. <A1>
and <A2> are line-number arguments. The
sequence of lines of text from <A1> to <A2> is
searched, seeking the first line whose text contains
the specified string. (Note that the line number is not
considered part of the text of a line.)

If a match is found, the relevant line is displayed and
the current line becomes this line. If no match is
found, the current line becomes that specified by
< A2 >, but execution terminates with no display.

For example, the command Q1,5\G IS could cause
the display:

0004 EDITING IS FUN
with this line becoming the current line.

5.410 Rewind command

R <T> connects power to the cassette recorder, to
allow rewinding of cassettes.

The cassette recorder controls are usually disabled,
because of HEKTOR’s control of the recorder’s
power supply. Following the R command, power is
made available to the recorder, and the user can
operate the recorder controls to rewind cassettes
ready for the saving or loading of lines of text.

Keying |RETURN| will remove the power from the

recorder again, to complete execution of this com-
mand.
5.4.11

S<A1>, <A2> <T> saves the specified lines of
text on tape.

Save-on-tape command

The immediate effect of this command is to cause
the message ‘SET RECORD' to be displayed on the
screen. The user should ensure that a rewound
cassette is placed in the recorder, and the recorder

36

controls set to the record position. Then, keying
will cause the lines of text specified by the
range <A1> to <A2>, inclusive, to be sent to the
recorder. When all the text has been sent, power is
removed from the recorder, and command execution
is complete.

It is good practice, immediately after saving text on
tape, to use the R and V commands to rewind the
cassette and verify that recording was successful. If
this is done, any recording errors will be detected
before the lines of text in the text buffer are lost. The
lines can be re-recorded if necessary.

5.412 Verify tape command

V < T > verifies that the text recorded on tape is cap-
able of being loaded into the text buffer.

Command execution for the verify command is very
similar to that for the load-from-tape command. The
only difference is that any text read from tape is not
actually appended to the text buffer. The purpose of
this command is to check that any subsequent L
commands will have a high probability of success.

A successful verification is indicated by the display
of the editor prompt, and by the absence of any error
messages.

6 8085 ASSEMBLY LANGUAGE

6.1 Overview of assembly-language
programming

The individual instructions in a microcomputer
program must be stored as machine-code in the
microcomputer’s program memory: that is, as 8-bit
binary codes which indicate the operation to be per-
formed and any additional operand information
required (such as the address of the location in
memory which contains the data to be operated on).
Not only are there different operations available in a
microprocessor's /nstruction set, but there are also
several different ways of specifying operands.
(There are said to be several addressing modes for
many of the basic operations.)

An example of machine-code is the 8-bit binary code
10010000 (or 90 hexadecimal). When interpreted as
an instruction by the 8085 microprocessor, this
means: ‘subtract the number stored in the
microprocessor’s B register from thatin its Aregister’.

There is little about the code 10010000 which in-
dicates this meaning to a human programmer, and
so programming directly in machine-code is a
tedious and error-prone activity. However,
programming in assembly language allows symbols
to be used which are easier for the programmer to
remember and interpret. The example instruction
above would be written in the 8085 assembly-
language as ‘SUB B’, which is clearly more nearly
related to the description of the instruction than the
binary or hexadecimal code of machine language. In
this example, ‘'SUB and "B’ are symbolic representa-
tions of the operation and operand parts of the in-
struction. Notice the space separating the two sym-
bols. This means that the operation and operand
parts of the instruction can be separately represen-
ted by symbols. In the machine-code 10010000,
these two parts of the instruction are much less
clear.

In this example, the symbol ‘B’ indicates that the
contents of register B are to be used as an operand.
Other addressing modes involve specifying
addresses of locations in memory which contain the
operand data. In this case, using assembly-
language, symbols can be chosen by the
programmer to represent particular addresses in
memory. For example, 'LDA COUNT' is an instruc-
tion which copies (or /oads) into the A register the
data from a particular memory location, which is
identified by the symbol ‘COUNT". In the machine-
code version of this instruction, the actual address
which locates the operand has to be specified as a
16-bit code.

Writing a program in the symbolic assembly-
language form is preferable, but the symbols have

eventually to be translated into their machine-code
equivalent to be executed by the microprocessor.
This translation can be performed automatically by
an assembler program, and the system software in
HEKTOR’'s ROM memory contains such an assemb-
ler. Assembly-language programs can be prepared
using the HEKTOR editor, and then translated into
machine-code by the assembler. Figure 6.1
illustrates schematically the process of program
development using the HEKTOR system software as
an aid to development.

design initial
version of

program using
assembly-language

y

(™ useEDITORto i
enter/modify yPing
text of program errors

y

use ASSEMBLER to
translate program
into machine code

errors detected
by assembler

A

__design errors ;JessetMOcT'Imgic}ge
- machine-
detected by testing program

/

program available
foruse

Figure 6.1 Program development

This section describes the structure of 8085
assembly-language programs, and how to use the
assembler.

6.2 Assembly-language statements

A program in 8085 assembly-language consists of a
number of lines of text (source lines). The assembler
recognizes three types of source line:

e comment lines;
e assembly-language instruction lines;
e assembler directives.

6.2.1 Comment lines

Comment lines are ignored by the assembler. They
are aids to program documentation that the
programmer may wish to use. Comment lines are
taken to be any lines which begin with a semicolon.
For example:

; INPUT ROUTINE:

’

is a set of three comment lines.

37

6.2.2 Assembly-language instructions

Each instruction line is translated by the assembler
into a machine-code instruction. These lines consist
of up to four fields, not all of which are present in
every instruction line. The line format, in terms of
these fields, is:

[Iabeﬂ [opcode] [operand] [comment]

field field field field

The labelfield is always optional. It consists of a label
symbol followed by a colon. The label symbol con-
sists of up to six characters. The label symbol is made
up of letters or a mixture of letters and numerals.
However, the first character must be a letter. The label
symbol is a symbol which represents the address in
memory where the machine-code instruction (as
translated from the opcode/operand fields in the in-
struction line) will eventually be stored. Accordingly,
each label in the program must use a unique symbol.
These are examples of valid label symbols:

START
LINE27
M8085A
z

The opcode field is always present, and consists of
a single mnemonic symbol (mnemonic means ‘serv-
ing to remind’). The symbol denotes one of the
eighty basic operations in the 8085's instruction set
(see Subsection 6.4).

An operand field is not required for some instruc-
tions (the “halt’ operation, for example). Other in-
structions involve either one or two operands. Each
of the operands contains information identifying the
location within the microcomputer of the data
which is to be operated on, or the data itself. For
example, in the instruction ‘"MOV A,B’, the operands
referred to are the contents of the microprocessor’s
A and B registers. The instruction means ‘move the
data from the B register into the A register’. When-
ever there are two operands in the operand field,
they are separated by a comma. (For details of
operand specification, see Subsection 6.3.)

The comment field in an instruction line is always
optional and, like the comment line, starts with a
semicolon. Any text following the semicolon is ig-
nored by the assembler, but is to help you under-
stand the operation of the program at that point.

For the assembler to be able to detect where one
field in an instruction line ends and the next begins,
certain conventions regarding field delimiters exist.
The colon in a label field is a sufficient delimiter
between the label and opcode fields. But for
readability, one or more spaces may be inserted after
the colon. The assembler expects one or more
spaces between the opcode and operand fields, if
there is an operand field. The end of the operand
field (or the opcode field if there is no operand field)
is indicated by a space, by the semicolon which

38

starts a comment field, or by the end of the line,
whichever occurs first.

6.2.3 Assembler directives

The third type of source line is used to supply
additional information about the program to the
assembler. These lines do not translate into machine
instructions, although they have a similar layout to
theinstruction lines; thatis, there are up to four fields:

Eabeﬂ [pseudo-opcode] [operand] [commen’f,
field field field field

The label, operand, and comment fields have the
same format as those in instruction lines, but the
pseudo-operations, of which there are five types,
have different functions.

Two pseudo-operations allow the programmer to
define blocks of data that the program is to operate
upon. They are:

® the DB pseudo-operation;
® the DW pseudo-operation.

The data byte pseudo-operation, DB, causes the
assembler to store in memory the 8-bit data
specified in the operand field. The operand may
define a single byte (see Subsection 6.3 for the
allowed forms of 8-bit operand), or a string of
character data. In this latter case, the operand is
specified as a sequence of characters enclosed in
single quotes, and the assembler translates this into
character codes (see Appendix C) for storage in
memory. Examples of the DB directive are:

CODES: DB5S a list consisting of the
DB 4 codes 05, 04, 03 (hex)
DB 3

DB ‘ERROR’ a list consisting of the
codes 45, 52, 52, 4F, 52
(hex)

Lists of data can be accessed by reference to their
symbolic starting address. For example, the symbol-
ic instruction ‘LDA CODES+2’ will be translated
into a machine instruction which will cause the third
item in the list of codes, which is the code 03 (hex)
to be copied into the A register.

MESS3:

The data word pseudo-operation, DW, causes the
assembler to store in memory the 16-bit data
specifiedinthe operandfield. (See Subsection 6.3 for
the allowed forms of 16-bit operand.) The data
occupiestwo adjacent 8-bitlocationsin the memory,
with the least significant 8 bits of the operand stored
in the location with the lower address. For example:

POWERS: DW 1 a list consisting of the 8-
DW 10 bit codes 01, 00, 0A, 00,
DW 100 64, 00, E8, 03 (hex)
DW 1000

There are three other pseudo-operations used in
assembler directive lines. The equate pseudo-
operation, EQU, is a direct way of assigning a value

to a symbol (rather than the indirect way of using a
label symbol in other source lines). The directive
‘COUNT: EQU 47’ allows the symbol COUNT to be
used elsewhere in the program whenever the con-
stant data value 47 is required. The origin pseudo-
operation, ORG, directs the assembler as to where in
memory to store the machine-code it creates by
translation of the subsequent lines of the assembly-
language program. The binary codes are stored in
consecutive locations beginning at the location
specified by the address given in the operand field of
the ORG directive. For example:

ORG 12288
TABLE: DB 1

DB 2

DB 3

has the effect of storing the specified table of data
starting at the location with the address 12288
denary (that is, 3000 hexadecimal). The symbolic
address ‘TABLE' can, of course, be used in the
assembly-language program when referring to the
table of data. HEKTOR's assembler allows at most
one origin directive in a program. It is used if the
programmer wishes to specify exactly where in
memory the machine-code version of the program
should be stored for execution by the
microprocessor. If there is no origin directive, the
code will be assembled so as to be available for
execution in an area of memory which is not used by
the editor’s text buffer (see Sections 5 and 6.5).

Finally, the end-of-program pseudo-operation,
END, indicates to the assembler that this is the last
line in the program. An optional operand field for
this pseudo-operation allows the program’s entry
point to be defined. (The entry point is the first
instruction in the program to be executed.) The
example of Figure 6.2 shows a program structure,
using each of the assembler directives.
;FIRST THE DEFINITIONS FOR DATA

ORG 15000 ;ORIGIN AT ADDRESS 15000

MESG: DB 'EXAMPLE' ; STORED CHARACTER CODES

FACTOR: EQU 8000 ; DEFINE VALUE FOR FACTOR

CONST: DW FACTOR ;16-BIT VALUE STORED

;NEXT THE INSTRUCTIONS

START: LDA MESG ;GET CODE FOR 'E'

END START ;DEFINE ENTRY POINT

Figure 6.2 Use of assembler directives

6.3 Operand specification

The operand field of an instruction contains in-
formation about one or more of the operands invol-
ved in the instruction. If there is more than one
operand specified, the specifications are separated
by a comma. The comma acts as a delimiter.

For some instructions, the operand value itself is
required to be specified (as an 8-bit or 16-bit value).
For others, the address of the location holding the
operand is specified (either a particular register in
the microprocessor, or a particular address
elsewhere in the microcomputer). Each type of
operand specification is discussed below.

6.3.1 Specifying 8-bit operand values

The assembler accepts symbolic, numeric and some
mixed specifications for 8-bit operands, namely:

® <symbol>

® < number>

® <symbol + number >

® <symbol — number>

For example, suppose the symbol COUNT has
previously been defined (in an ‘equate’ directive) as
having the value 47. Then the instruction "MVI
A,COUNT-1" has the meaning: ‘copy the value of
the second operand (COUNT-1) into the A register’.
This value will be evaluated by the assembler as
47-1=46, and the 8-bit code for 46 will form part of
the machine-code instruction. Note that the ‘I’ in the
opcode mnemonic MVI indicates an immediate
operation; that is, the operand data itself is im-
mediately available in the instruction, rather than the
address of the data.

The value of operands can be specified in any of
three ways:

e denary numbers;
® hexadecimal numbers;
e ASCII codes.

A string of numeric characters, by itself, is taken to
be a denary number. A string of characters from the
set 0-9, A-F, immediately followed by an H, and
beginning with a numeric character, is interpreted as
a hexadecimal number. For example, OAFH will be
evaluated as the hexadecimal number AF (which is
175 denary) but AFH will be treated as a symbol,
not a number.

A character enclosed in single quotes will be trans-
lated by the assembler into the 8-bit ASCII code for
that character (see Appendix C). Therefore, using
the previous example in which COUNT has the
value 47 denary, each of the following instructions
has the same machine-code equivalent:

MVI A,COUNT- ;symbolic expression

MVI A,46 ;denary number
MVI A,2EH ;hex number
MVI A ;ASCII code

39

6.3.2 Specifying 16-bit operand values

Some instructions have an operand which is ex-
pressed as a 16-bit value in the machine-code in-
struction. The same forms of expression as for 8-bit
operands can be used in the assembly-language
version, with the assembler evaluating the operand
in 16 bits rather than in 8 bits. In the machine-code
instruction, the 16-bit operand is split into two 8-bit
codes for processing and storage in the 8-bit
microcomputer. As an example, the instruction LXI
H,3 means ‘load the value of the second operand (3
in this case) expressed as a 16-bit value, into the
register pair consisting of the 8-bit H register and the
8-bit L register in the microprocessor’. Note that
after executing this instruction the L register would
contain 03 (hex) and the H register 00 (hex), as the
16-bit code for 3 is 0003 (hex). The machine-code
for this instruction is three 8-bit codes (or bytes):

21 (hex) — opcode for ‘'LXI’
03 (hex) — least significant 8 bts of operand
00 (hex) — most significant 8 bits of operand

By convention, when a 16-bit value is stored in
memory as two consecutive bytes, the least sig-
nificant byte is stored in the location with the lower
address, as shown in this example.

6.3.3 Specifying operand addresses

Some instructions require that the address of the
location holding the data to be operated on is
specified, rather than the value of the data itself. For
some of these instructions, a 16-bit memory address
is specified; for others, the memory address is im-
plied. One instruction allows only a limited number
of memory addresses to be specified, the restart
addresses. Finally, two instructions have operands
which refer to 8-bit //0 addresses, rather than mem-
ory addresses.

Table 6.1 summarizes these four types of addresses
used as operands, and the ways in which they can
be expressed in the 8085 assembly-language are
described below.

Table 6.1 Types of operand address

6.3.3.7

Memory addresses used as operands (type A16 in
Table 6.1) can be specified by the programmer using
the symbolic, numeric, or mixed expressions for
operands that are allowed for 16-bit data values
(Subsections 6.3.1 and 6.3.2). For example, ‘JMP
START+3’' means ‘jump (or transfer control) to the
section of program whose first instruction is found
at the symbolic address START+3". In this example,
the assembler will evaluate START+3 as a particular
16-bit memory address, and this address will be
stored as part of the machine-code instruction.
‘START’, of course, will have had to be specified,
probably as a /abe/ attached to an instruction.

16-bit memory address

6.3.3.2 Implied memory address

There is a large group of instructions for which the
memory address is not specified directly within the
instruction, but is implied. The actual address is con-
tained within the microprocessor, in its H and L
registers.

The contents of these two 8-bit registers are strung
together to give a 16-bit address. The H, or *high’,
register contains the most significant 8 bits of the
16-bitaddress, while the L, or ‘low’, register contains
the least significant part of the address. For example,
if H contains OA (hex) and L contains B1 (hex), the
16-bit address referred to by the H, L register pair is
OAB1 (hex). The symbol ‘M’ (see Table 6.1) is used
in the operand field of an instruction which allows
this addressing mode. Thus, INR M means ‘incre-
ment (or add 1 to) the 8-bit number stored in mem-
ory at an address given by the contents of the H, L
register pair’. Note that it is the programmer’s res-
ponsibility to ensure, using other instructions, that
the H and L registers are loaded with the required
address before the instruction is executed.

6.3.3.3 Restart addresses

The ‘restart’ instruction (see Subsection 6.4) refers
to only eight memory addresses where the restart
can occur. These are specified, in a coded form, by
a single digit in the range 0 to 7. (This is the A3 type

Examples of
symbolic specification

Type of Description of address
operand address
A16 16-bit memory address
A8 8-bit I/O address
A3 One of eight restart
addresses
M Implied memory address

(the 16-bit address stored

in the H,L register pair)

START+3
8765
3000H

DEVI+2
63
40H

0
7

M

40

of operand in Table 6.1.) The actual addresses in
memory are those given by multiplying the operand
digit by 8 (namely the hexadecimal addresses 0000,
0008, 0010, 0018, 0020, 0028, 0030, 0038).

6.3.3.4 1/0 addresses

The ‘input’ and ‘output’ instructions (Subsection
6.4) have operands which are 8-bit //0 addresses
(type A8 in Table 6.1). These addresses refer to the
1/0 devices in the microcomputer rather than mem-
ory. The programmer can specify these operand
addresses using the same symbolic forms as for 8-bit
data value operands (Subsection 6.3.1).

6.3.4 Specifying registers

The fourth type of operand address specifies
addresses within the microprocessor; that is, itiden-
tifies microprocessor registers. Figure 6.3 shows
these registers and their symbolic names. Two of the
8-bit registers

N

8-bit registers
A
hd Y

A register {accumulator) F register (flags)

B register C register
D register E register
H register L register

| register (interrupt)

SP register (stack pointer)

PC register {(program counter)

~
16-bit registers
Figure 6.3 8085 microprocessor registers

Table 6.2 Groups of register operands

registers, the stack pointer (SP) and the program
counter (PC) are 16-bit registers and their contents,
being memory addresses, can only be operated on as
16-bit quantities. The remaining nine registers (A, F,
B, C, D, E, H, L, I) are 8-bit registers, but some in-
structions operate on the 16-bit values contained in
particular register pairs. The possible register pairs
are Aand F, Band C, D and E, H and L.

Some instructions are limited in that they operate on
data in only one particular register — there is
therefore no need to specify the register as an
operand.

For example, the ‘'CMA’ instruction operates only on
the A register contents, and the operand field is not
required for this instruction.

For other instructions, some registers or register
pairs are allowed, but not others. It is, therefore,
necessary to classify the registers and register pairs
into groups, so that the programmer can identify
which registers or register pairs can be used as
operands for particular instructions. These groups
are shown in Table 6.2. In assembly-langauge in-
structions, the symbolic register name is used in the
operand field.

Note that the symbol 'H’, for example, is used to refer
to either the 8-bit register H or the 16-bit register
pair H, L. The assembler decides which is intended
from the operation code — some instructions have
8-bit operands, others 16-bit operands, but none
allow a choice. For example:

LXI H,3 ;load H, L with 16-bit code for 3
MVI H,3 ;load H with 8-bit code for 3

Register Type of register(s) involved
group

name

Symbol used
in operand
field

Registers allowed
in group

R8 single 8-bit register

R16a 16-bit register, or
pair of 8-bit registers

R16b pair of 8-hit registers

R16¢c pair of 8-bit registers

A register
B register
C register
D register
E register
H register
L register

B & C registers
D & E registers
H & L registers
Stack pointer

A & F registers
B & C registers
D & E registers
H & L registers

B & C registers
D & E registers

o w IUUJ(',U) VWTOW I ITMOO®>
=

41

6.4 Opcode specification

The opcode field of an instruction contains a single
mnemonic symbol, representing one of the types of
operation in the 8085°s instruction set. The assemb-
ler translates this symbol into an 8-bit operation
code, using its permanent symbol table. |f the in-
struction has one or more register operands (Table
6.2), then this information is also coded into the
8 bits of this first word of the machine-code instruc-
tion. The other types of operand, 8-bit values, 16-bit
values, memory addresses, etc. (see Subsection
6.3), are coded into one or two additional 8-bit
codes and are appended to the first word. Operand
types are summarized in Table 6.3.

Table 6.3 Operand types

Operand Description

Type

D16 16-bit operand value

D8 8-bit operand value

A16 16-bit memory address

M implied address (specified by H,L contents)
A8 8-bit /0 address

A3 One of eight restart addresses

R16a 16-bit register or register-pair (Table 6.2)
R16b 16-bit register or register-pair (Table 6.2)
R16c 16-bit register or register-pair (Table 6.2)
R8 8-bit register (Table 6.2)

In this subsection, the instruction set is presented in
several ways. Table 6.4 gives a condensed inter-
pretation of each instruction symbol, together with
the types of operand that are used with it. Table 6.5
lists the machine-code opcodes of all instructions,
in numeric order, with their assembly-language
equivalents. Table 6.6 gives the same information,
but in alphabetic order of opcode symbois.

Table 6.6 also gives information on the time taken to
execute each of these instructions. This number is
the number of microprocessor clock cycles required
for the instruction to be fetched into the
microprocessor and executed. On HEKTOR, the
frequency is 3 024 000 Hz, giving a cycle time of
approximately 0.328 microseconds. The AClinstruc-
tion therefore takes 2.297 microseconds to execute.
The conditional instructions’ execution time
depends on whether the condition is met or not; the
time is shorter if it is not met. The execution time for a
sequence of instructions can be calculated simply by
adding together the individual execution times.

In the remainder of this subsection, the instructions
are described in detail, and presented in alphabetic
order. Before explaining these instructions, how-
ever, it is necessary to review the function of three
special microprocessor registers, namely:

® program counter (PC);

42

® stack pointer (SP);
e flag register (F).

6.4.1 Program counter (PC)

The purpose of this 16-bit register is to store the
address of the memory location which holds the
next machine-code instruction to be fetched and
executed. The microprocessor supplies this address
information, via the microcomputer address bus, at
the start of the sequence of operations which make
up the fetch/execute sequence (or cycle) for an in-
struction. The addressed memory location supplies
the 8-bit data stored at that address via the data bus,
and this data is interpreted by the microprocessor as
a machine-code instruction. (If the instruction
requires additional operand information, the
program counter’s contents are incremented, allow-
ing the microprocessor to read the second, and
possibly third, 8-bit code of the instruction.)

During the fetching of all instructions, the
microprocessor automatically increments the con-
tents of the program counter each time it accepts a
machine-code byte. In this way, instructions are
normally executed in the order that they are stored
in memory.

Some instructions, however, achieve their effects by
deliberately altering the contents of the program
counter. The instruction "JMP START' instructs the
microprocessor to execute the instruction stored at
address START. This is achieved by simply loading
the operand information (the address START) into
the program counter, and the next instruction
executed will automatically be that stored at START.

6.4.2 Stack pointer (SP)

For the 8085 microprocessor, as with most com-
puters, an area of read/write memory is used as a
stack. The stack is used for the temporary storage of
data, but information is stored in and retrieved from
the stack in a unique, and useful, way. Its method of
access is by pushing data onto the top of the stack
or popping it off again, as discussed in Section 2.5.
The top of the stack is the location in memory whose
address is contained in the 16-bit stack pointer in
the microprocessor.

In the 8085 microprocessor, push and pop opera-
tions involve only 16-bit data, so each ‘push’ opera-
tion is really two pushes, one for each byte of the pair
that make up a 16-bit data item. The source of the
16-bit data for pushing, and the destination of
popped 16-bit data, are the 16-bit registers (or pairs
of 8-bit registers) in the microprocessor.

There are instructions which explicitly enable the
pushing and popping of register pair data, but other
instructions include these operations as part of their
overall function. The most important of these are the
subroutine call and return instructions.

Table 6.4 Summary of 8085 instruction types

Data Copy Group

MOV

MV

LDA
LDAX

STA
STAX

LHLD
SHLD
LXI

XCHG

XTHL

Copy data between register/memory and
register/memory

Copy operand data to register/memory

Copy data from memory to A register

Copy data from A register to memory

Copy data from memory to HL register pair
Copy data from HL register pair to memory
Copy operand data to register pair
Exchange data between HL and DE register
pairs

Exchange data between HL register pair and
top of stack

Arithmetic Group

ADD

ADI
ADC

ACI

SuUB

Sul

SBB

SBI

INR
DCR
INX
DCX
DAD

DAA

Add register/memory contents to A register
contents

Add operand data to A register contents

Add register/memory and Carry contents to A
register contents

Add operand data and Carry contents to A
register contents

Subtract register/memory contents from A
register contents

Subtract operand data from A register
contents

Subtract register/memory and Carry contents
from A register contents

Subtract operand data and Carry contents
from A register contents

Increment register/memory contents by 1
Decrement register/memory contents by 1
Increment register pair contents by 1
Decrement register pair contents by 1

Add register pair contents to HL register pair
contents

Adjust A register contents for BCD result
following addition

Logical Group

ANA

ANI

ORA

ORI

XRA

Logical AND register/memory contents with A
register contents

Logical AND operand data with A register
contents

Logical OR register/memory contents with A
register contents

Logical OR operand data with A register
contents

Logical EXCLUSIVE-OR register/memory
contents with A register contents

XRI Logical EXCLUSIVE-OR operand data with A
register contents

CMP Compare register/memory contents with A
register contents

CPI Compare operand data with A register
contents

RLC Rotate A register contents left, and into Carry

RRC Rotate A register contents right, and into
Carry

RAL Rotate A register and Carry contents left

RAR Rotate A register and Carry contents right

CMA Complement A register conients

CMC Complement Carry contents

STC Set Carry contents to 1

Program Sequence Control Group

Jump if: Call if: Return if: Condition is:

JC CcC RC Carry (Carry=1)

JNC CNC RNC No Carry (Carry=0)

JZ cz RZ Zero (Zero=1)

JNZ CNZ RNZ Not Zero (Zero=0)

JP CpP RP Plus (Sign=0}

JM CM RM Minus (Sign=1)

JPE CPE RPE Parity even (Parity=1)

JPO CPO RPO Parity odd (Parity=0)

JMP CALL RET Unconditionally

PCHL Copy data from HL register pair to Program
Counter

RST Call routine at restart address

Stack Operation Group

PUSH Push register pair contents onto the stack

POP Pop top-of-stack data into register pair

SPHL Copy data from HL register pair to Stack
Pointer

Input/Output Group
IN Copy data from 1/O device to A register
ouT Copy data from A register to /O device

Machine Control Group

Ei Enable interrupt system

DI Disable interrupt system

RIM Copy Interrupt Status data to A register

SIM Copy A register contents to interrupt Control
HLT Halt processor

NOP No operation

43

Table 6.5 Opcodes in numeric order

OP
CODE MNEMONIC
00 NOP 40 MOV B,B 80 ADD B Cco RNZ
0l LXI B,Dlé6 41 MOV B,C 81 ADD C Cl POP B
02 STAX B 42 MOV B,D 82 ADD D Cc2 JNZ Al6
03 INX B 43 MOV B,E 83 ADD E Cc3 JMP Al6
04 INR B 44 MOV B,H 84 ADD H C4 CNZ Alé
05 DCR B 45 MOV B,L 85 ADD L C5 PUSH B
06 MVI B,D8 46 MOV B,M 86 ADD M cé ADI D8
o7 RLC 47 MOV B,A 87 ADD A c7 RST O
08 - 48 MOV C,B 88 ADC B c8 RZ
09 DAD B 49 MOV C,C 89 ADC C c9 RET
OA LDAX B 4A MOV C,D 8A ADC D CA JZ Al6
OB DCX B 4B MOV C,E 8B ADC E CB -
ocC INR C 4C MOV C,H 8C ADC H CcC CZ Ale6
OD DCR C 4D MOV C,L 8D ADC L CD CALL Alé6
OE MVI C,D8 4E MOV C,M 8E ADC M CE ACI D8
OF RRC 4F MOV C,A 8F ADC A CF RST 1
10 - 50 MOV D,B 90 SUB B DO RNC
11 LXI D,Dlé6 51 MOV D,C 91 SUB C Dl POP D
12 STAX D 52 MOV D,D 92 SUB D D2 JNC Alé6
13 INX D 53 MOV D,E 93 SUB E D3 OUT A8
14 INR D 54 MOV D,H 94 SUB H D4 CNC Al6
15 DCR D 55 MOV D,L 95 SUB L D5 PUSH D
16 MVI D,D8 56 MOV D,M 96 SUB M D6 SUI D8
17 RAL 57 MOV D,A 97 SUM A D7 RST 2
18 - 58 MOV E,B 98 SBB B D8 RC
19 DAD D 59 MOV E,C 99 SBB C D9 -
1A LDAX D 5A MOV E,D 9A SBB D DA JC Alé6
1B DCX D 5B MOV E,E 9B SBB E DB IN A8
1C INR E 5C MOV E,H 9C SBB H DC CC Aale6
1D DCR E 5D MOV E,L 9D SBB L DD -
1E MVI E,D8 5E MOV E,M 9E SBB M DE SBI D8
1F RAR 5F MOV E,A 9F SBB A DF RST 3
20 RIM 60 MOV H,B AO ANA B EO RPO
21 LXI H,Dl6 61 MOV H,C Al ANA C E1l POP H
22 SHLD Alé6 62 MOV H,D A2 ANA D E2 JPO Al6
23 INX H 63 MOV H,E A3 ANA E E3 XTHL
24 INR H 64 MOV H,H A4 ANA H E4 CPO Al6
25 DCR H 65 MOV H,L A5 ANA L E5 PUSH H
26 MVI H,D8 66 MOV H,M A6 ANA M E6 ANI D8
27 DAA 67 MOV H,A A7 ANA A E7 RST 4
28 - 68 MOV L,B A8 XRA B E8 RPE
29 DAD H 69 MOV L,C A9 XRA C E9 PCHL
2A LHLD Alé6 6A MOV L,D AA XRA D EA JPE Al6
2B DCX H 6B MOV L,E AB XRA E EB XCHG
2¢ INR L 6C MOV L,H AC XRA H EC CPE Al6
2D DCR L 6D MOV L,L AD XRA L ED -
2E MVI L,DS8 6E MOV L,M AE XRA M EE XRI D8
2F CMA 6F MOV L,A AF XRA A EF RST 5
30 SIM 70 MOV M,B BO ORA B FO RP
31 LXI SP,D16 71 MOV M,C Bl ORA C F1 POP PSW
32 STA Al6 72 MOV M,D B2 ORA D F2 JP Alé
33 INX SP 73 MOV M,E B3 ORA E F3 DI
34 INR M 74 MOV M,H B2 ORA H F4 CP Alé6
35 DCR M 75 MOV M, L BS ORA L F5 PUSH PSW
36 MVI M,D8 76 HLT B6 ORA M F6 ORI D8
37 sTC 77 MOV M,A B7 ORA A F7 RST 6
38 - 78 MOV A,B BS CMP B F8 RM
39 DAD SP 79 MOV a,C B9 CMP C F9 SPHL
34 LDA Al6 7A MOV A,D BA CMP D FA JM Al6
3B DCX SP 7B MOV A,E BE CMP E FB EI
3¢ INR A 7C MOV A,H BC CMP H FC CM Alé
3D, DCR A 7D MOV A,L BD CMP L FD -
3E MVI A,DS8 7E MOV A.M BE CMP M FE CPI D8
3F CMC 7F MOV A,A BF CMP A FF RST 7
Note: D8 8-bit data

8-bit I/O address

l6-bit data
16~bit memory address

D16
Alé

>
=<}
W

44

Table 6.6 Opcodes in alphabetical order

OP
MNEMONIC CODE TIME
ACI D8 CE 7 LDA Al6 3A 13 OUT A8 D3 10
ADC A 8F 4 LDAX B OA 7 PCHL E9 6
ADC B 88 4 LDAX D 1a 7 POP B Cl 10
ADC C 89 4 LHLD Alé6 22 16 POP D D1 10
ADC D 8A 4 LXI B,Dlé 0l 10 POP H El 10
ADC E 8B 4 LXI D,Dlé6 11 10 POP PSW F1l 10
ADC H 8C 4 LXI H,Dlé 21 10 PUSH B C5 12
ADC L 8D 4 LXTI Sp,Dl6 31 10 PUSH D D5 12
ADC M 8E 7 MOV A,A 7F 4 PUSH H ES 12
ADD A 87 4 MOV A,B 78 4 PUSH PSW F5 12
ADD B 80 4 MOV A,C 79 4 RAL 17 4
ADD C 81 4 MOV A,D 7A 4 RAR 1F 4
ADD D 82 4 MOV A,E 7B 4 RC D8 6/12
ADD E 83 4 MOV A,H 7C 4 RET C9 10
ADD H 84 4 MOV A,L 7D 4 RIM 20 4
ADD L 85 4 MOV A,M 7E 7 RLC 07 4
ADD M 86 7 MOV B,A 47 4 RM F8 6/12
ADI D8 cé 7 MOV B,B 40 4 RNC DO 6/12
ANA A A7 4 MOV B,C 41 4 RN2Z co 6/12
ANA B AO 4 MOV B,D 42 4 RP FO 6/12
ANA C Al 4 MOV B,E 43 4 RPE E8 6/12
ANA D A2 4 MOV B,H 44 4 RPO EO 6/12
ANA E A3 4 MOV B,L 45 4 RRC OF 4
ANA H Ad 4 MOV B,M 46 7 RST O c7 12
ANA L AS 4 MOV C,A 4F 4 RST 1 CF 12
ANA M A6 7 MOV C,B 48 4 RST 2 D7 12
ANI D8 E6 7 MOV C,C 49 4 RST 3 DF 12
CALL Al6 cD 18 MOV C,D 4A 4 RST 4 E7 12
CC Alé DC 9/18 MOV C,E 4B 4 RST 5 EF 12
CM Al6 FC 9/18 MOV C,H 4C 4 RST 6 F7 12
CMA 2F 4 MOV C,L 4D 4 RST 7 FF 12
cMC 3F 4 MOV C,M 4E 7 RZ c8 6/12
CMP A BF 4 MOV D, A 57 4 SBB A 9F 4
CMP B B8 4 MoV D, B 50 4 SBB B 98 4
CMP C B9 4 MOV D, C 51 4 SBB C 99 4
CMP D BA 4 MOV D,D 52 4 SBB D 98 4
CMP E BB 4 MOV D,E 53 4 SBB E 9B 4
CMP H BC 4 MOV D, H 54 4 SBB H 9c 4
CMP L BD 4 MOV D, L 55 4 SBB L 9D 4
CcMP M BE 7 MoV D, M 56 7 SBB M 9E 7
CNC Al6 D4 9/18 MoV E, A 5F 4 SBI D8 DE 7
CNZ Al6 c4 9/18 MoV E,B 58 4 SHLD Al6 22 16
CP Al F4 9,18 Mov E,C 59 4 SIM 30 4
CPE Alb EC 9/18 MOV E,D SA 4 SPHL F9 6
CPI D8 FE 7 MOV E,E 5B 4 STA Al6 32 13
CPO Al6 E4 9/18 MOV E,H 5¢ 4 STAX B 0z 7
CZ Al6 cC 9/18 MOV E,L 5D 4 STAX D 12 7
DAA 27 4 MOV E,M SE 7 STC 37 4
DAD B 09 10 MOV H,A 67 4 SUB A 97 4
DAD D 19 10 MOV H,B 60 4 SUB B 90 4
DAD H 29 10 MOV H,C 61 4 SUB C 91 4
DAD SP 39 10 MOV H,D 62 4 SUB D 92 4
DCR A 3D 4 MOV H,E 63 4 SUB E 93 4
DCR B 05 4 MOV H,H 64 4 SUB H 94 4
DCR C oD 4 MOV H,L 65 4 SUB L 95 4
DCR D 15 4 MOV H,M 66 7 SUB M 96 7
DCR E 1D 4 MOV L,A 6F 4 SUI D8 D6 7
DCR H 25 4 MOV L,B 68 4 XCHG EB 4
DCR L 2D 4 MOV L,C 69 4 XRA A AF 4
DCR M 35. 10 MOV L,D 6a 4 XRA B A8 4
DCX B OB 6 MOV L,E 6B 4 XRA C A9 4
DCX D 1B 6 MOV L,H 6C 4 XRA D AA 4
DCX H 2B 6 MOV L,L 6D 4 XRA E AB 4
DCX SP 3B 6 MOV L,M 6E 7 XRA H AC 4
DI F3 4 MOV M,A 77 7 XRA L AD 4
EI FB 4 MOV M, B 70 7 XRA M AE 7
HLT 76 5 MOV M,C 71 7 XRI D8 EE 7
IN A8 DB 10 MOV M,D 72 7 XTHL E3 16
INR A 3C 4 MOV M,E 73 7
INR B 04 4 MOV M,H 74 7
INR C oc 4 MOV M, L 75 7
INR D 14 4 MVLI A,DS8 3E 7
INR E 1c 4 MVI B,D8 06 7
INR H 24 4 MVI C,D8 OE 7
INR L 2C 4 MVI D,D8 16 7
INR M 34 10 MVI E,D8 1E 7
INX B 03 6 MVI H,D8 26 7
INX D 13 6 MVI L,D8 2E 7
INX H 23 6 MVI M,D8 36 10
INX SP 33 6 NOP oo 4 Note: D8 = 8-bit data
JC Alé DA 7/10 ORA A B7 4 A8 = 8-bit I/O address
JM Al6 FA 7/10 ORA B BO 4 D16 = 16-bit data
JMP Al6 c3 10 ORA C BL 4 Al6 = 16-bit memory address
JNC Ale6 D2 7/10 ORA D B2 4
JNZ Alé c2 7/10 ORA E B3 4 TIME = execution time in
JP Alé F2 7/10 ORA H B4 4 machine cycles; where
JPE Al6 EA 7/10 ORA L B> 4 two times given, longer
JPO Al6 E2 7/10 ORA M B6 7 time is if action is
JZ Al6 CA 7/10 ORI D8 F6 7 performed

45

6.4.3 Flag register (F)

The flag register can be treated as an 8-bit register,
but is more usefully considered as a collection of
1-bit registers or flags. Of the 8 bits, only 5 are used
in the 8085. Figure 6.4 shows the structure of the
flag register. The purpose of the flags is to supply
additional information about the effects of some of
the machine instructions. This allows other instruc-
tions to perform different actions depending on the
value of a particular flag. The five flags are:

sign flag (S);

zero flag (Z);

carry flag (CY);
auxiliary carry flag (AC);
parity flag (P).

Bit Bit Bit Bit Bit Bit Bit Bit

7 ¢] 5 4 3 2 1 0
S VA AC P CcYy
flag | flag - flag - flag - flag

Figure 6.4 The flag register

The sign flagis setto the value 1 by some instructions
if the result of that operation is a negative number.

These instructions set the sign flag to O if the result
is a positive number and to 1 otherwise. Other in-
structions perform an operation only if the sign flag
is found to be 1 or 0. For example, 'JP START’
means ‘jump to address START if and only if the sign
flag is O (that is, indicating ‘positive’)".

The zero flag is similar in that it is set to 1 by some
instructions if the result is the 8-bit code for zero
(that is, 00000000 binary).

The carry flag is used in arithmetic operations and is
setto 1 or O as a result of arithmetic and some other
processing instructions. Like the sign and zero flags,
there are a number of instructions whose operation
is conditional upon the value of the carry flag.

The auxiliary carry flag is similar to the carry flag but
is useful only if the programmer wishes to perform
arithmetic using the binary-coded-decimal
representation for numbers, rather than the 2's com-
plement representation.

The parity flag is set to 1 by some instructions if the
resulting 8-bit code contains an even number of bits
set at 1 (that is, the code is of even parity). If there
is an odd number of bits set at 1 (odd parity) the
parity flag is set to 0.

6.4.4 Description of instruction set

The behaviour of each type of instruction is
described below, and Tables 6.4 to 6.6 provide a
summary. Any operands required by an instruction
will be indicated in terms of the types of operand
listed in Table 6.3 and described in Subsection 6.3.

46

The effects on the flags in the flag register are also
described. The following format is adopted for each
instruction:

opcode symbol operand type(s)
expanded mnemonic

number of bytes in instruction

flags affected

description of instruction

examples

Note that those instructions having an 8-bit register
as an operand (Type R8 in Table 6.3), also allow the
implied address mode (Type M).

ACI D8

(add immediate, with carry)

2 bytes

Z, S, P, CY, AC flags

The value D8 and the value of the CY flag are added, using
2’'s complement 8-bit arithmetic, to the contents of the A

register. The result is left in the A register, and flags are set
according to this result (see Subsection 6.4.3).

Example: ACi14H
Assuming the A register originally contained 42
(hexadecimal) and the CY flag was 1, the result is 57

(hexadecimal). The Z, S, P, CY and AC flags are all set to
0 in this example.

ADC R8

(add with carry)
ADC M

1 byte

Z, S, P, CY, AC flags

Identical in function to ACI, except that the data added are
the contents of a register or the implied address.

ADD R8

(add)

ADD M

1 byte

Z, S, P, CY, AC flags

Identical in function to ADC, except that the value of the
CY flag is not used in the addition.

ADI D8

(add immediate)

2 bytes

Z, S, P, CY, AC flags

Identical in function to ACI, except that the value of the
CY flag is not used in the addition.

ANA R8

(logical AND with A register)
ANA M

1 byte

Z, S, P, CY, AC flags

Each bit in the A register that was previously 1 is set to 0
if the corresponding bit of the operand specified is 0. The
result sets the Z, S, P flags appropriately and the CY flag
is set to 0, and the AC flag to 1.

Example: ANA B

Assuming A contained 10101010 (binary) and B con-
tained 00001111 (binary), A would be changed to
00001010 (binary), with Z, S, CY flags set to 0 and P, AC
setto 1.

ANI D8

(AND immediate with A register)
2 bytes

Z, S, P, CY, AC flags

Identical in function to ANA, except that the operand data
is specified in the instruction, rather than being a register’s
contents.

CALL A16

(call a subroutine)
3 bytes

no flags affected

The current contents of the PC register are pushed on the
stack (see Subsection 6.4.2). The address A16 is then
loaded into the PC register. This allows transfer to a
subroutine (at A16) in such a way that, when completed,
areturn can be made to the calling routine. This is perfor-
med by one of the ‘'RETURN’ group of instructions. By
using the stack to save the return address, the called
subroutine can itself call other subroutines without any
confusion of return addresses (see also RET instruction).

CC A16

(call if carry)

3 bytes

no flags affected

Identical to the CALL instruction, except that the action is
performed if and only if the CY flag is set to 1.

CM A16

(call if minus)

3 bytes

no flags affected

Identical to the CALL instruction, except that the action is
performed if and only if the S flag is 1 (indicating a
negative or ‘minus’ condition).

CMA

(complement A register)
1 byte

no flags affected

Each bit in the A register is altered to its complementary
value (1 to O, 0 to 1). The result is said to be the ‘one’s
complement’ of the original value.

cMC

(complement carry)

1 byte

CY flag only

The CY flag is complemented (1 becomes 0, 0 becomes

1).

CMP R8

(compare with A register)
CMP M

1 byte

Z, S, P, CY, AC flags

The instruction is used to determine whether the contents
of register R8 are greater than, equal to, or less than the
contents of the A register. The contents of register R8 are
subtracted from the contents of A. The operands are left
unchanged, but the flags are set according to the result of
the subtraction.

The S flag is set to the most significant bit of the result.
Thus if the result is taken to be a 2's complement number,
the S flag gives its sign. The Z flag is set to one only if the
result is zero (i.e. the accumulator and register contents
are equal). The CY flag is set according to the following
table, with the register contents taken as unsigned
integers (0—255 denary).

CY flag

(A)<(R8) (A)=(R8) (A)>(R8)
Set to 1 0 0

Example: CMP C

if the A register contains 7F (hex) and the C register con-
tains 93 (hex), the Z flag will be set to 0, and the S and CY
flags setto 1.

CNC A16

(call if no carry)
3 bytes

no flags affected

Identical to the CALL instruction, except that the action is
performed if and only if the CY flag is set to 0.

CNZ A16

(call if not zero)
3 bytes

no flags affected

Identical to the CALL instruction, except that the action is
performed if and only if the Z flag is O (indicating a non-
zero result in a previous instruction).

CP A16

(call if positive)
3 bytes

no flags affected

Identical to the CALL instruction, except that the action is
performed if and only if the S flag is set to O (indicating a
‘positive’ result).

CPE A16

(call if parity even)
3 bytes

no flags affected

Identical to the CALL instruction, except that the action is
performed if and only if the P flag is set to 1 (even parity).

CPI D8
(compare immediate)
2 bytes
Z, S, P, CY, AC flags

Identical to the CMP instruction, except that the value
compared with the A register contents is D8, rather than
a register’s contents, or contents of a memory location.

47

CPO A16

(call if parity odd)
3 bytes

no flags affected

Identical to the CALL instruction, except that the action is
performed if and only if the P flag is set to O (odd parity).

CZ A16

(call if zero)

3 bytes

no flags affected

Identical to the CALL instruction, except that the action is
performed if and only if the Z flag is 1 (indicating a zero
result in a previous instruction).

DAA

(decimal adjust A register)
1 byte

Z, S, P, CY, AC flags

This instruction adjusts the contents of the A register
when binary-coded decimal (BCD) arithmetic is being
used, instead of the more generally useful 2's complement
arithmetic. It uses the values of the CY and AC flags,
following an add operation, to produce the effect of BCD
addition.

Example: ADI 73H; add 73 (BCD)

DAA ; adjust to BCD
Assuming the A register originally contained 08 (hex),
then following the ADI, the A register would contain 7B
(hex). The DAA would then convert this to 81 (hex),
which is the correct result in terms of BCD numbers.

DAD R16a

(double register add)
1 byte

CY flag only

This instruction adds the 16-bit value in the specified
register pair to the 16-bit contents of the H, L register pair,
leaving the resultin H, L. The CY flag reflects the result of
this 16-bit 2’s complement addition.

Example: DAD B
Assuming H, L contained FFFF (hex) and B, C contained

0001 (hex), the result would be 0000 (hex), and the CY
flag would be set to 1.

DCR R8

(decrement register)
DCR M

1 byte

Z, S, P, AC flags only

The contents of the specified operand are decremented (1
is subtracted). Note that the CY flag is unaffected.

DCX R16a

(decrement register pair)
1 byte

no flags affected

The 16-bit contents of the specified register pair are
decremented (1 is subtracted)

DI

(disable interrupts)
1 byte

no flags affected

48

This instruction sets one of the bits (bit 3) in the interrupt
register (1) to 0. When this bit is set to 0, all interrupts,
except the TRAP interrupt (Section 9) are ignored by the
8085 microprocessor.

El

(enable interrupts)
1 byte

no flags affected

This instruction is the inverse of the DI instruction.
Following El, bit 3 of the | register is set to 1, and the
microprocessor responds to interrupts (Section 9).

HLT

(halt execution)

1 byte

no flags affected

This instruction prevents the microprocessor from con-
tinuing with the execution of the next instruction. The

only way to restart it is via an external interrupt (Section
9) or a system reset (Section 2).

IN A8

(input from 1/0 device)
2 bytes

no flags affected

This instruction loads an 8-bit data item from the 1/0
device whose 1/0 address is A8 into the A register.

INR R8

(increment register)
INR M

1 byte

Z, S, P, AC flags only

The contents of the specified operand are incremented (1
is added). Note that the CY flag is unaffected.

INX R16a

(increment register pair)
1 byte

no flags affected

The 16-bit contents of the specified register pair are in-
cremented (1 is added)

JC A16

(jump if carry)

3 bytes

no flags affected

Identical to the JMP instruction, except that the action is
performed if and only if the CY flag is setto 1.

JM A16

(jump if minus)
3 bytes

no flags affected

Identical to the JMP instruction, except that the action is
performed if and only if the S flag is 1 (indicating negative
or ‘minus’).

JMP A16

(jump)
3 bytes
no flags affected

This instruction loads the PC register with the value A16.
This means that the next instruction to be executed will be
that stored at address A16 in memory.

JNC A16

(jump if no carry)
3 bytes

no flags affected

Identical to the JMP instruction, except that the action is
performed if and only if CY is set to 0.

JNZ A16

(jump if non-zero)
3 bytes

no flags affected

Identical to the JMP instruction, except that the action is
performed if and only if the Z flag is O (indicating a non-
zero result in a previous instruction).

JP A16
(jump if positive)
3 bytes
no flags affected

Identical to the JMP instruction, except that the action is
performed if and only if the S flag is O (indicating positive).

JPE A16

(jump if parity even)
3 bytes

no flags affected

ldentical to the JMP instruction, except that the action is
performed if and only if the P flag is 1 (even parity).

JPO A16

(jump if parity odd)
3 bytes

no flags affected

Identical to the JMP instruction, except that the action is
performed if and only if the P flag is O (odd parity).

JZA16

(jump if zero)

3 bytes

no flags affected

Identical to the JMP instruction, except that the action is
performed if and only if the Z flag is 1 (indicating a zero
result in a previous instruction).

LDA A16

(load A register direct)
3 bytes

no flags affected

The contents of the memory Iocation whose address is
A16 are loaded into the A register.

LDAX R16¢

(load A register indirect)
1 byte

no flags affected

The contents of the memory location whose address is
contained in the register pair specified by the R16¢
operand (see Table 6.2) are loaded into the A register.

LHLD A16

(load H and L direct)
3 bytes

no flags affected

The contents of the memory location whose address is
A16 are loaded into the L register. The contents of the
memory location whose address is one more than A16 are
loaded into the H register. Note that when 16-bit data
items are stored in memory, the convention is that the least
significant 8 bits are stored at the next lower address than
the most significant 8 bits. If this convention is adhered to,
after an LHLD instruction, the H register will correctly hold
the most significant 8 bits of the 16-bit value loaded.

LX! R16a, D16

(load register pair immediate)

3 bytes

no flags affected

The 16-bit data item D16 is loaded into the specified
register pair.

Example: LX) H,0123H

After this instruction, H will contain 01 (hex) and L will
contain 23 (hex).

Example: LXI SP,2800H

This instruction defines the current top of stack as being
at address 2800 (hex).

MOV R8,R8
{move)

MOV R8.M
MOV M,R8

1 byte

no flags affected

The data in the second operand register (or at the implied
address) is loaded into the first operand register (or into
memory at the implied address).

Examples: MOV A,B; load B into A.
. MOV M,C; store C in memory at the address
in H,L.
MOV L,M; load L from memory using address
in H,L.

MVI R8,D8
(move immediate)
MVI M,D8

2 bytes

no flags affected

The data D8 is loaded into the specified register (or into

memory at the address specified by the H, L register pair).

Examples: MVI A,32H; load A with 32 (hexadecimal).
MVI M,27; store 27 (decimal) at the address
specified by contents of H,L.

NOP

(no operation)

1 byte

no flags affected

This instruction does nothing except use up a little time.

ORA RS8

(inclusive OR with A register)
ORA M

1 byte

Z, S, P, CY, AC flags

49

Each bit in the A register that was previously O is set to 1
if the corresponding bit in the specified operand is 1. The
result sets the Z, S, P flags appropriately and the CY and
AC flags to 0.

Example: ORAH

Assuming A contained 10101010 (binary) and H con-
tained 00001111 (binary), A would be changed to
10101111 (binary) with Z, CY, ACsetto0Oand S, Pto 1.

ORI D8

(inclusive OR immediate)
2 bytes

Z, S, P, CY, AC flags

tdentical to the ORA instruction, except that the operand
data is specified as D8, rather than as the contents of a
register.

OUT A8

(output to 1/O device)
2 bytes

no flags affected

This instruction transmits the contents of the A register to
the 1/0 device whose |/O address is A8.

PCHL

(load program counter from H, L)
1 byte

no flags affected

The contents of the H, L register pair are loaded into the PC
register, which causes program execution to continue at
the address specified by the H, L register pair.

POP R16b

POP PSW

(pop a 16-bit data item from the stack)
1 byte

flags possibly affected (see discussion)

The content of the memory location, whose address is
specified by the content of register SP, is moved to the
low-order register of register pair R16b. The content of the
memory location, whose address is one more than the
content of register SP, is moved to the high-order register
of register pair R16b. The content of register SP is incre-
mented by 2 (Subsection 6.4.2). The flags are not affected
except for the case when the flag register is loaded,
together with the A register, by the POP PSW instruction.

PUSH R16b

PUSH PSW

(push a 16-bit data item on the stack)

1 byte

no flags affected

The content of the high-order register of register pair R16b
is moved to the memory location whose address is one
less than the content of register SP. The content of the
low-order register of register pair R16b is moved to the
memory location whose address is two less than the

content of register SP. The content of register SP is
decremented by 2 (Subsection 6.4.2).

RAL

(rotate A register left)
1 byte

CY flag only

The contents of each of the bits in the A register are moved
one bit position to the left. The previous CY value s loaded

50

into the rightmost (least significant) bit of the A register,
and the new CY value is the previous valtue of the leftmost
bit of the A register.

Example: 1f the previous A register contents were
00111100 (binary), with the CY flag set to 1, then
01111001 (binary) is the new value with the CY flag set
to 0.

RAR

(rotate A register right)
1 byte

CY flag only

Similar to the RAL instruction, except that the data move-
ment is to the right. The old CY value is loaded into the
leftmost A register bit and the old value of the rightmost A
register bit is loaded into the CY flag.

RC

(return if carry)
1 byte

no flags affected

Identical to the RET instruction, except that the action is
performed if and only if the CY flag is set to 1.

RET

(return from subroutine)
1 byte

no flags affected

The 16-bit item currently on top of the stack is popped off
(Section 6.4.2) and loaded into the PC register. Assuming
that this data item was originally pushed onto the stack by
the matching CALL instruction, the RET instruction
therefore has the effect of resuming execution of the call-
ing routine at the next instruction following the CALL
instruction.

Example:
;cailing routine:
CALL SUB1 ;execute subroutine SUB1
;then do this
SUB1: :subroutine SUB1
ﬁET :return to calling routine

Note that the subroutine labelled SUB1 can itself calt
other subroutines; the stack mechanism ailows return
addresses to be pushed and popped in the correct order.

RIM

(read interrupt register)
1 byte

no flags affected

The contents of the interrupt register (l), are loaded into
the A register. This data contains information concerning
the state of three of the 8085 interrupts, the state of the
interrupt enable flag, and the state of the serial input line
(see Section 9). :

RLC

(rotate A register left with carry)
1 byte

CY flag only

The contents of each of the bits in the A register are moved
one bit position to the left. The leftmost bit of the A register
is loaded into its rightmost bit and into the CY flag.

Example: If the previous A register contents were
00111100 (binary), with the CY flag set to 1, then
01111000 (binary) is the new value with the CY flag set
to 0.

RM

(return if minus)
1 byte .
no flags affected

Identical to the RET instruction, except that the action
occurs if and only if the S flag is 1 (indicating negative or
‘minus’).

RNC

(return if no carry)
1 byte

no flags affected

Identical to the RET instruction, except that the action
occurs if and only if the CY flag is 0.

RNz

(return if not zero)
1 byte

no flags affected

ldentical to the RET instruction, except that the action
occurs if and only if the Z flag is O (indicating a non-zero
result in a previous instruction).

RP

(return if positive)
1 byte

no flags affected

Identical to the RET instruction, except that the action
occurs if and only if the S flag is O (indicating positive).

RPE

(return if parity even)
1 byte

no flags affected

Identical to the RET instruction, except that the action
occurs if and only if the P flag is 1 (even parity).

RPO

(return if parity odd)
1 byte

no flags affected

Identical to the RET instruction, except that the action
occurs if and only if the P flag is O (odd parity).

RRC

(rotate right with carry)
1 byte

CY flag only

Similar to the RLC instruction, except that the data move-
ment is to the right. The rightmost bit of the A register is
loaded into its leftmost bit and into the CY flag.

RST A3

(restart)

1 byte

no flags affected

This instruction is effectively a one-byte CALL instruction,
where the address of the called subroutine is given by A3
multiplied by 8. The only assembly language form allowed
for A3 is a single decimal digit in the range 0-7.

Example: RST 7

Calls the subroutine at address 7x8 = 56 (decimal) = 38
(hex).

RZ

(return if zero)

1 byte

no flags affected

Identical to the RET instruction, except that the action
occurs if and only if the Z flag is 1 (the result of a previous
instruction was zero).

SBB R8

(subtract with borrow)

SBB M

1 byte

Z, S, P, CY, AC flags

The contents of the specified operand are subtracted,
together with the CY flag value (acting as a ‘borrow’),
from the contents of the A register, using 2's complement

arithmetic. The result is left in the A register and the flags
are set according to this result.

Example: SBB B

Assuming the A register originally contained 4, the B
register 2, and there is a borrow (the CY flag is set to 1),
then the result willbe 1. The Z, S, P and CY flags will be
setto O, and the AC flag to 1.

SB! D8

(subtract immediate with borrow)
2 bytes

Z, S, P, CY, AC flags

Identical to the SBB instruction, except that the operand
value D8 is subtracted, rather than the contents of a regis-
ter.

SHLD A16

(store H and L direct)
3 bytes

no flags affected

This instruction is the inverse of the LHLD instruction. The
contents of the L register are stored at address A16, and
the contents of the H register at the next higher address.

SIM

(set interrupt register)
1 byte

no flags affected

Like the RIM instruction, this is a multipurpose instruc-
tion, which uses the various bits of the A register to set or

51

clear individual bits of the interrupt register (1), clear one
of the interrupt lines, and output a value on the serial
output fine from the microprocessor (see Section 9).

SPHL

(load SP register with H, L)
1 byte

no flags affected

The stack pointer (SP) is loaded with the 16-bit contents
of the H, L register pair.

STA A16

(store A register direct)
3 bytes

no flags affected

This instruction is the inverse of the LDA instruction. The
A register's contents are stored in memory at the operand
address A16.

STAX R16¢

(store A register indirect)
1 byte

no flags affected

This instruction is the inverse of the LDAX instruction. The
A register's contents are stored in memory at the address
specified by the operand register pair.

STC

(set carry)

1 byte

CY flag only

The carry flag (CY) issetto 1.

SUB R8

(subtract)

SUB M

1 byte

Z, S, P, CY, AC flags

This instruction is identical to SBB, except that the CY
flag’'s value is not used in the subtraction.

SuUI D8
(subtract immediate)
2 bytes
Z, S, P, CY, AC flags

This is identical to the SUB instruction, except that the
value subtracted is the operand value D8, rather than a
register’s contents.

XCHG

(exchange H, L with D, E)
1 byte

no flags affected

The 16-bit contents of the H, L register pair are interchan-
ged with the 16-bit contents of the D, E register pair.

XRA R8

(exclusive OR with A register)
XRAM

1 byte

Z S, P, CY, AC flags

Each bit on the A register that was previously different
from the corresponding bit in the specified operand is set

52

to 1. If the bit was the same as the corresponding bit, it is
set to 0. The result sets the Z, S, P flags appropriately, and
the CY and AC flags to 0.

Example: XRA C

Assuming A contained 10101010 (binary) and C con-
tained 00001111 (binary), A would be changed to
10100101 (binary), with the Z, CY, and AC flags set to 0
and the S and P flags setto 1.
Example: XRA A

<LEAR

This is an easy way to set each bit in the A register and the
CY flag to 0.

XRi D8

(exclusive OR immediate)
2 bytes

Z, S, P, CY, AC flags

Identical to the XRA instruction, except that the operand
data is D8, rather than a register’s contents.

XTHL

(exchange H, L with top-of-stack)
1 byte

no flags affected

The 16-bit data item, stored in memory starting at the
location whose address is in the SP register, is exchanged
with the 16-bit contents of the H, L register pair. The stack
pointer value is unaffected.

6.5 Use of the assembler

An assembly-language program is prepared as a set
of source lines, using the editor program (Section
5). Assuming the program is in the editor's text
buffer, using the editor's A command will cause
execution of the ROM-based assembler. The
assembler will translate the source lines in the
editor's text buffer and produce four types of in-
formation:

e user symbol table;

® machine-code version of the program;
e program listing;

® error messages, if any.

These are each discussed below.

6.5.1 User symbol table

Some of the symbols in the source program are per-
manent symbols; that is, their interpretation is fixed.
Permanent symbols include the mnemonic opcodes
(for example, MOV, PUSH) and the symbols denot-
ing registers or register pairs (A, SP). The remaining
symbols are created by the programmer, and a task
of the assembler is to make a list of these symbols,
and assign values to them. Then when the machine-
code instructions are generated, the 8-bit or 16-bit
values of these symbols can be used.

This overall task is split into three phases, each in-
volving a scan of the whole source program from

beginning to end by the assembler. During the first
pass, the assembler simply makes a list of the user-
defined symbols, and stores the symbols as strings
of characters in the user symbol table in read/write
memory. During this pass, the assembler may
discover etrors such as incorrect forms of labels, and
will display error messages (Subsection 6.5.4) on
the screen to that effect.

During the second pass, the assembler assigns
values to the symbols. The directly specified sym-
bols, using the EQU directive, are clearly straight-
forward, but the label symbols can only be evaluated
when the origin of the whole program is known and
when the number of locations which are required for
each machine-code instruction is known. The origin
is either user-defined (Subsection 6.2.3) or is assig-
ned by the assembler as being the next unused loca-
tion in memory after the editor text buffer and the
user symbol table. The number of locations required
for each instruction is deduced from the opcode
mnemonic (the operand values do not affect this
number). During Pass 2 other errors may be revealed
and reported, such as the use of an undefined op-
code mnemonic. After Pass 2, all symbols will now
have been listed and associated with a specific value
or code.

6.5.2 Machine-code program

During the third and final pass, the machine code is
produced, instruction by instruction, and stored in
the machine-code buffer (the free area of memory
following the text buffer and the user symbol table).
If the origin has been assigned by the assembler, the
machine-code program can be executed without
moving it from the buffer. If the origin is user-
defined, the code will have to be moved, after as-
sembly, so that the first location that it occupies is
the defined origin. During the third pass the operand
information is translated, as well as the opcode
mnemonic, thus fully defining each machine-code
instruction. Any errors in operand specification will
be revealed at this stage.

memory machine editor label

address code line no. field
0060 ;
0061 ;s MOTOR
006 2 ; USES
006 3 ;

1 8DGE6 06 00 OO0 6 4 DRIVE:

18DS8 211640 00635

1 8DB o9 00 6 6

18DC 7 E 006 7

18DD 320840 0O0O0G6 8

1 8EO c 9 0069

Figure 6.5

C

6.5.3 Program listing

An additional activity during Pass 3 is the produc-
tion of the program listing (it is optional; see Sub-
section 6.5.5). This is a line-by-line display of the
source text and the machine-code equivalent as
generated by the assembler. The original source
lines are formatted into columns, one column for
each of the four fields. This presentation is not only
more readable than the original source text, but also
helps to identify some errors. (For example, if a
‘label’ appears in the opcode column, it is because
the assembler has interpreted this symbol as an op-
code mnemonic.)

FIG 6.5 shows a fragment of a listing produced by
the HEKTOR assembler.

6.5.4 Error messages

The HEKTOR assembiler has a repertoire of nine error
messages. These are somewhat cryptic, so they are
amplified below. They should also not be taken too
literally, since they indicate the most likely source of
the error, rather than its actual cause. All that is cer-
tain is that the assembler has had trouble with trans-
lating the line in question, either because of some
aspect of the line itself or due to some interaction
with other assembly-language lines in the same
program.

‘Bad label’ means that a user-defined label symbol
appears to violate the allowed form. That is, labels
should consist of up to six alphanumeric symbols, of
which the first should be alphabetic. The label should
be followed immediately by a colon delimiter.

‘Bad inst.” means that the assembler cannot recog-
nize the opcode (or pseudo-operation) mnemonic.
This may be due to the symbol in fact not being an
allowed opcode mnemonic, or it may be that the
assembler has not delimited the opcode field in the
way the programmer intended. (See Subsection
6.4.4 for allowed opcode mnemonics, Subsection
6.2.3 for pseudo-operations, and Subsection 6.2 for
allowed forms of field delimiting.)

opcode operand comment
field field field
DRIVE:
A S TABLE INDEZX
MV I B, O
L X I H,MOTAB ; TABLE
DAD B ; ADD INDEX
MOV A, M ;i GET VALUE
STA MDVO ; SAVE
RET

53

‘Bad register’ means that the assembler is expecting,
from its interpretation of the opcode mnemonic, one
or more register operands of a particular type, and
the symbols it has encountered do not belong to the
type in question. Again, this may be due to improper
delimiting as well as to use of the wrong symbol.
(See Subsection 6.3.4 for register operand types,
and Subsection 6.2 for field delimiting.)

'Missing opnd’ means that one or more of the ex-
pected operands (for the opcode in question) ap-
pear to have been omitted. Apart from obvious
causes, this may again be a delimiting problem.

‘Undef. symbol’ is a common error in early versions
of large programs. It means that a user-defined sym-
bol in the operand field has not been defined as a
label or by an ‘equate’ directive. The symbol may
have been mistyped or omitted, or the assembler
may be attempting to translate an incorrectly
specified number as a symbol. There are several
other causes.

‘Rep. label’ means that the same symbol has been
used to define labels in more than one place in the
program. This is disallowed as each symbol must
have a unique value.

‘Forwd. ref’ means that the assembler is trying to
translate a symbol in the operand field which it has
recognized as a valid user-defined symbol, but for
which a value has not yet been defined. This only
occurs with assembler directive lines, because they,
unlike instruction lines, have to be fully translated
during Pass 2.

‘Bad number’ means that a number in the operand
field cannot be translated into a valid 8-bit or 16-bit
code. Common causes of this error are omitting the
‘H" delimiter from the hexadecimal number, not
starting it with a numeric digit, or mistyping a digit
character. Note that the assembler does not check
that the value of the evaluated operand lies within
the expected bounds. For example, MVI A,4003H
will not produce an error message — the assembler
will simply use the least significant 8 bits of the
operand, O3H in this case, in the machine-code in-
struction.

Finally, the error message ‘store full means that
there is not room in the read/write memory for the
source text, the symbol table, and the machine-code
buffer. For typical programs, this becomes a hazard
only when approaching some 300 lines of source
program.

6.5.5 Assembler options

The editor command to execute the assembler (the
A command) allows for optional variations in the
assembler’s behaviour during assembly. The A com-
mand can include switches which specify these op-
tions. Each switch is a single character (one of L, M,
S, T, W) preceded by a back slash character ‘\'. The

54

switches can be in any order in the command line, so
the following are all examples of valid A commands:
A (by itself); A\S; AA\LAW\T; AAM\T\S. The effect
of each switch is described below.

"\L" causes the program /isting (Subsection 6.5.3)
to be displayed during the assembler's Pass 3. (If
this switch is omitted, there is no listing produced.)
As an aid to readability during listing, the assembler

will wait if the [RETURN] key is held down for a

second or two and then released. A second use of

the [RETURN| key allows the listing display to con-

tinue.

“\M" directs the assembler to /oad the machine code
from the buffer into the area of memory where it is
expected to execute (Subsection 6.5.2), and then to
return to the monitor. Having returned to the
monitor, the program can immediately be executed
using the G command. Note that using G by itself,
without an address being specified, will cause
execution to begin at the program’s entry point
(Subsection 6.2.3).

‘\S’ causes the assembler to display the user symbol
table that it has generated, after it has completed the
assembly. Also included in this display are the
program’s origin and entry point.

‘\T’ causes the assembler to save the assembled
machine-code on cassette tape. The program is
saved on tape in such a way that when subsequently
loaded again (using the monitor's L command), it is
loaded into the area of memory specified by its true
origin (that is ready for execution) rather than back
into the assembler’'s machine-code buffer.

"\W’ causes the assembler to wait during assembly
if it encounters (and displays) an error condition.
The user can absorb the displayed message, and
then cause the assembler to continue by using the

key.

7 USING HEKTOR’s BASIC
LANGUAGE

7.1 Introduction to BASIC

This section contains a complete description of the
version of BASIC available in HEKTOR. It is not
meant as an introductory teaching text, and assumes
some familiarity with concepts of programming and
BASIC. However, the assumed familiarity is kept to
a minimum.

The BASIC facilities of HEKTOR are described in
two parts. Subsection 7.2, ‘The BASIC command
mode’, describes how a program is to be handled,
and answers such questions as: How do you write
and correct program lines? How do you run
programs, or store them on a cassette? Subsection
7.3, ‘Writing BASIC programs’, contains the details
of the language itself: i.e. What is the structure of a
BASIC program? What is its syntax? What variables,
functions, instructions, etc. can be used?

The various facilities in BASIC are grouped accord-
ing to their function to enable you to find what you
are looking for even if you don’t know its name.
However, to help you find a precise description of a
given term quickly, use the short index below.

7.1.1 Short index of BASIC keywords

page page page
ABS 62 LEN 62 ROW 60
ASC 62 LET 60 RUN 56
BAUD 60 LIST 56 SAVE 58
CHR$% 62 LOAD 58 SCROLL 61
CLOSE 64 MID$ 62 SIZE 60
CcoL 60 NEW 56 SOUND 64
DELETE 56 NEXT 63 STAT 60
DIM 59 OPEN 64 STOP 59
FOR 63 PRINT 63 STRS$ 62
GOsSuB 62 PW 61 SW 60
GOTO 62 RANDOM 61 TAB 64
IF 63 REM 59 THEN 63
INPUT 64 RETURN 62 TIME 61
KSTAT 60 REWIND 58 VAL 62
LED 60 RIGHT$ 62 VERIFY 58
LEFT$ 62 RND 62

HEKTOR will also accept abbreviations of these
keywords, consisting of enough characters to speci-
fy the keyword unambiguously foliowed by ".".

Example: REW. can be used for REWIND.

7.2 The BASIC command mode

7.2.1 Introduction: What is the BASIC
command mode?

When you switch on HEKTOR, the monitor program
comes into operation. It will accept a variety of com-

mands which enable you to make use of many of
HEKTOR's facilities. Similarly, to write, correct, run
or store programs in BASIC you also need to be able
to give HEKTOR appropriate commands. These
commands are available in a program called the
BASIC interpreter. To activate the BASIC interpreter
from the monitor, key the command (for
‘high-level language’). You will then be in the
BASIC ‘command mode’. The remainder of this sec-
tion describes the commands available to you in this
mode.

To leave the command mode, use the command
MON, which returns you to the HEKTOR monitor.
Pressing also returns control to the
MONITOR. In either case, the MONITOR's W
command (see p.29) allows return to the BASIC
command mode with lines of BASIC intact. The H
command also returns to the BASIC interpreter but
deletes any lines of BASIC previously stored.

When you are in BASIC command mode, the symbol
¥ is displayed as a prompt to indicate that the
BASIC interpreter is waiting for a command from
you. This BASIC command mode prompt is
analogous to the monitor prompt, *>". You can tell
whether HEKTOR is under the control of the monitor
program or the BASIC interpreter by noting which
prompt is displayed.

7.2.2 An introductory example

The following example illustrates the way in which
a program is written and executed. It introduces
concepts which will be described more fully later.

The lines
10 LETX=2+2
20 PRINT X [RETURN]

form a simple BASIC program. If you type them in,
and then type (on a new line) RUN[RETURN/, HEK-
TOR will respond with ‘4. HEKTOR does not
execute the program until the command ‘RUN’ is
given. Note that both lines of the program start with
a line number.

Note also that in the BASIC command mode HEK-
TOR does not respond to any line or command until
the key is pressed. From now on
will be taken as understood, and omitted except
where really necessary.

On the other hand, if you type in the two statements
above without their line numbers, HEKTOR will res-
pond with ‘4’ immediately, without the command
RUN. Statements without line numbers are called
‘immediate execution’ statements. They are useful
for quick calculations, for checking out the features
of BASIC and, especially, for finding errors in
programs (see Subsection 7.2.5). However, im-
mediate execution statements are not stored and so
cannot be changed or run again without re-typing
them in completely.

b5

If you write a BASIC program with line numbers,
and wish to review what you have written, type the
command 'LIST". HEKTOR will respond with a list-
ing of all the lines written so far, in order of their line
numbers. Line numbers determine the order in
which statements are listed and executed (unless
otherwise directed), and line numbers remain fixed,
as typed.

7.2.3 Storing and editing programs

Before a BASIC program can be executed it must be
stored in HEKTOR’s main memory. This may be
done either by typing it in from the keyboard, or by
reading it in from cassette tape. (For the latter, see
Subsection 7.2.7.) You can create space for a new
program in memory by typing the command NEW.

NEW

The command NEW deletes all previous lines of program
in preparation for storing a new one.

Typing in a program

Lines of a program may be typed in at any time when the
BASIC prompt ‘¥’ is displayed. A program line always
starts with a line number and terminates when you press
the key. A line may extend over several rows of
the display screen, provided the total number of characters
in that program line does not exceed 256. New lines may
be added to the current program at any time and in any
order of line numbers. BASIC keywords should always be
typed using upper-case letters.

Changing and correcting single lines of program

There are several ways of making corrections to a program
line. If you notice a mistake as you are typing it in, the
back-space key |« will delete the error. You can then type
the correct character. If you wish to remove a line entirely,
type its line number, followed by [RETURN]. If you wish to
change a line completely, type its line number and then the
new version of the line. The previous version will be

automatically deleted when you press [RETURN],

To make corrections to a line you have previously typed in
(and which is thus stored in HEKTOR's memory), start by
typing the line number. Then press repeatedly. At each
press, a letter from the stored version of the line will be
displayed. You can add characters to this new displayed
version from the keyboard where appropriate, and delete
incorrect characters using the [<]key. If you type
(or type after all the characters in the stored version
have been displayed) the new displayed version will
replace the old stored version in memory. (Thus any
characters from the stored version which have not been
displayed will be lost. Note that this is different from the
behaviour of the assembly language editor.)

Example: Suppose you have typed

40 PRNT X, Y

and now wish to correct the typing error in the word
PRINT. Type in the line number (40), and then press the
key twice. The result will be

40 PR
You can then type |, and then pressrepeatedly until the
remainder of the line appears

40 PRINT X, Y
This_new version will replace the old version when

is pressed.

DELETEn, m

This command deletes all lines with numbers in the range
‘'n" to ‘'m’ inclusive. There need not necessarily be lines of
program with the numbers ‘n’ or ‘m’.

Examples:

DELETE 10, 1000 deletes all lines with

numbers from 10 to 1000.

DELETE 40, 40 deletes line 40 only

DELETE 60 }

DELETE 35, 25 are invalid

LIST n

This command lists the program lines starting with line
number n. If n is omitted, the first line of the program is
used. The number n needn’t actually be a line number in
the program. Listing can be temporarily interrupted by
holding down the space bar. It can be stopped completely

by pressing the key.
Examples: LIST, LIST100, LIST 25
LIST 10, 20 is invalid

If you terminate a LIST statement with [CTRL]-[P] (see Ap-
pendix C) instead of the listing will be sent to
the serial line instead of to the screen. This is useful, for
example, if a printer is connected to the serial line.

Warning: Do not use LIST with [CTRL]-[P] if no device is
connected to the serial lines, as this will cause HEKTOR to
wait indefinitely for control signals. To return to BASIC
command mode from this state you will first have to press

RESET|, which will delete your program.

are all valid

7.2.4 Running programs

RUN

This command will start the execution of a program,
beginning at the lowest line number. It also initializes all
variables (see Subsection 7.3.3). HEKTOR will then
execute the program until:

(a) itencounters a STOP statement within the program,
or

(b) it runs out of statements to execute,

or

(c) itencounters an error in the program.

(HEKTOR will also temporarily stop executing a program
when it executes an INPUT statement. Then it will wait for
you to type in some information. See Subsection 7.3.7 for
details.)

The end of execution will be signalled by a prompt, ‘¥, or
an ERROR message.

Some programs have no natural end, as in the following
example:

Example:
10 PRINT 30 + 20
20 GOTO 10

This program will print ‘60" on line after line indefinitely.
It can be stopped by pressing the key. You can tell
thata program is stili running by the absence of the prompt
¥’ When a program stops for any of the reasons (a) - (c)
above, the values of the variables at the time it was
stopped are still stored and thus are available to you.

56

GOTOn

This command starts execution of a program at line num-
ber n. It does not alter the values of the variables when
doing so. Thus it can sometimes be used to re-start a
program where it left off after being stopped. (Using RUN
would initialize ali variables first.) It can also be used to
start a program in the middle. (Note that there should be
no space between GO and TO.)

7.2.5 Debugging: Finding program errors

Typing a program into HEKTOR and running itis no
guarantee that the program will produce the results
you expect of it. The BASIC interpreter provides
various facilities to help find the mistake.

Programs which don't stop

it is possible for a program to get into a loop with no exit
point, or to get stuck in other ways. Generally, pressing
K] will cause execution to stop and a prompt ‘¥’ to
be dnsplayed. In extreme cases where this does not work
you may have to resort to which will also delete
your program.

Error messages

Any time the BASIC interpreter tries to execute a com-
mand or BASIC statement which does not agree with its
rules it will produce an error message, including a code.
The error messages are of two main forms, syntax errors
and execution errors. A syntax error is an error in the way
a statement is put together, incorrect use of symbols, etc.
A list of error messages is given in Appendix E, in code
order.

Example:

10 PRINNT X

RUN

SYNTAX ERROR 1978

10 P?RINNT X
HEKTOR will print an error message and will print out the
offending line, usually with ‘?° to indicate the point at
which it was unable to make sense of the statement. In this
case, since it did not recognize PRINNT as the keyword

PRINT, it assumed that P was a variable and did not know
why it was followed by other letters!

In most cases it will be obvious why the statement was
incorrect. However, if it is not, you can refer to Appendix
E for the meaning. In this case, error 1978 means ‘equal
sign expected’'.

Sometimes all of the statements will be valid in them-
selves, but when they are executed HEKTOR may be asked
to do something it cannot. This gives rise to an execution
error.
Example:

10 PRINT2+2

20 GOTO 15

RUN

4

EXECUTION ERROR 614

20 GOTO 15
From Appendix E, error 614 is ‘GOTO non-existent line’.
Athird, and comparatively rare form of error message is the

implementation error. 1t occurs when your instructions
cannot be carried out due to a limitation of the BASIC

interpreter (for example, too many nested parentheses in
an expression).

Immediate execution statements

Sometimes a program will run without error messages, but
it will be clear from the output that the results are not what
they should be. To find the errors, it is necessary to find out
exactly what the computer is doing, so that you can spot
where it has diverged from what you expected it to do.

One way to do this is to insert STOP statements at various
key points in the program. When the program stops you
can use immediate-execution statements (PRINT X, Y and
GOTO n) to check the values of important variables and
then restart the program. You can also use immediate-
execution assignment statements (LET X = 20) to set the
variables to their correct values to see if the remainder of
the program works correctly. Alternatively, you can insert
PRINT statements in the program itself, with or without
STOPs, to see what happens at key points.

Control characters

The ASCII characters whose codes are 00-1F (hex) are
called contro/ characters (see Appendix C). Only some of
these are used in HEKTOR, but all are available for use
if desired. Some have special keys on the keyboard
((RETURN], [HOME .’m, [T]). All can be obtained
by hoiding down [CTRL] and, while it is held, pressing
some other key. The key to use is the one for which the
ASCli code is 40 (hex) greater than that of the desired key.
For example, with [M] is the same as and
would normally be written [CTRL]-[M].

7.2.6 Format and character control

Upper- and lower-case characters

When you first enter the BASIC command mode the key-
board will only produce upper-case letters. The shift key
will have an effect only on numbers and most of the sym-
bol keys. Pressing [CTRL]-[S] enables the keyboard to
produce both upper- and lower-case letters. It will revert
to all upper-case whenever is pressed or, within
a line, if you press [CTRL]-[S] a second time.

Graphics characters
In addition to the usual characters in the ASCII table,
HEKTOR can produce a set of graphic characters, as
shown in Appendix D. In BASIC these can be obtained in
two ways.
Example

PRINT CHR$ (241)
will display the @ symbol. CHR$ is suitable for displaying
single characters, or for use in programs to produce pat-
terns. Alternatively, strings of graphics characters may be

obtained by keying [CTRL] . (for lower-case) or
[CTRL}G] andﬁ [S! (for upper-case), as explained in

Appendix D.
Examples
PRINT “[CTRL}-[G] F [CTRL]-G]"
will display the - symbol, corresponding to capital F.
PRINT “[cTRLI-{G][CTRL}-[s] FQ [CTRLI-[S][CTRLIG]"
will display 6 @, corresponding to lower-case f and q.
Note that when using [CTRL-[G] in this way, the keys [{].

D:I - (=], [<), [FOME] and [RETURN] ali produce graphics
characters. To return to the usual character set, key

[cTRLHG]

57

7.2.7 Saving and loading programs on
cassette tape

This section explains how to save a complete program on
tape and how to read back into memory (load) a program
you have previously stored on tape. These operations are
done using the SAVE and LOAD commands respectively.
To check that a program you have just saved has been
stored correctly, use the VERIFY command. To rewind the
tape use the REWIND command. Note that there is
another use for tape, which is not considered in this sec-
tion, namely to transfer data to or from a tape while a
program is running. This is explained in Subsection 7.3.3
‘Input/output instructions’.

SAVE ‘name’

This command saves a complete program on tape and
labels it there with ‘name’. This is so that HEKTOR can
distinguish it from other programs stored on the same tape
with other names. Before using it, insert a tape into your
recorder either fully rewound or following previously
recorded programs. (If the recorder is connected to HEK-
TOR you will need to use the REWIND command to ena-
ble you to operate it, as explained below.) Then type the
command

SAVE ‘name’

The name used can be any string of characters up to 200
long.

Examples: SAVE ‘'TEST PROGRAM’
SAVE “16JULY’

HEKTOR will respond with ‘SET RECORD'. You should
then set the controls on your tape recorder to record, and
press [RETURN]. HEKTOR will then record all lines of
BASIC program that are currently stored in its memory.
The recording of the program itself will be preceded by a
high-pitched tone (which will be audible through your TV
loudspeaker if the volume is turned up), and followed by
a lower-pitched hum. The program itself sounds like a
long scratchy buzz.

When the recording is finished HEKTOR will stop the
recorder and display a prompt, ' *’. Be sure to write down
the name you have used to label the program, preferably
on the cassette itself. If you forget it, you will not be able
to load the program!

REWIND

The REWIND command allows you to operate the tape
recorder’s controls manually. This is necessary, for exam-
ple, to rewind a tape before and after a program has been
saved on it, or to prepare for loading a program from it.
When you have finished rewinding, or otherwise using the
recorder’s controls, press the key a second time
to inform HEKTOR that you are ready. It will respond with
the prompt, “ ¥,

VERIFY ‘name’

The VERIFY command tells HEKTOR to check a file that
you have just recorded on tape. If verification is successful
then it is likely that the program has been saved correctly,
and itis highly likely that it can be loaded successfully later
on.

HEKTOR will respond with ‘SET TO PLAY'. You should
then set the controls on your recorder to playback, and

press |RETURN|.
58

HEKTOR will search the tape for files labelled with ‘name’,
sotherules for program namesin the VERIFY command are
the same as in the SAVE command (e.g. up to 200 charac-
ters long). It will continue searching until it finds a correct-
ly labelled file. A successful verification is indicated by the
display of the BASIC prompt, and by the absence of any
error message. [f HEKTOR has obviously gone past the
point where your program was recorded, you will have to
stopitusing thekey. If this happens, check that the
name you used was correct. Otherwise, it is likely that the
program was not saved successfully.

Examples: VERIFY ‘SAMPLE’
VERIFY 'TM222 PROJECT’

LOAD ‘name’

This command tells HEKTOR to load the BASIC program
file labelled ‘name’ from tape into its memory. If you simply
wish to continue work on a program previously stored on
tape you must make sure there is no other program already
stored in internal memory. To do this, use the NEW com-
mand before using LOAD. If there is another program
stored in HEKTOR’s memory, the new program will be
appended to the end of the first program. This can be
useful in some circumstances, but it is important that line
numbers in the new program are higher than any in the old
program.

As with VERIFY, the rules for the label ‘name’ are the same
as for the SAVE command. Again, HEKTOR will search the
tape until it finds the correctly labelled file. An unsuccess-
ful search can be stopped by pressing [BREAK].
Examples: LOAD 'PLOT PROGRAM’,

LOAD 'VERSION 14B’

7.3 Writing BASIC programs
7.3.1 The structure of a BASIC program

A BASIC program consists of a sequence of lines
containing statements in BASIC, as shown in the
following example:
Example:
10 REM THIS PROGRAM CALCULATES 2 + 2
20X=2+2
30 PRINT X
40 STOP
This example illustrates the use of line numbers,

comments or remarks, and the STOP statement,
which we will now look at in more detail.

Line numbers

If a statement in BASIC is to form part of a program, it must
start with a line number. If it has no line number, it will be
executed immediately after the key is typed, in-
stead of when the program is run. Line numbers must be
positive integers between 1 and 32767. It is common
practice to number lines in multiples of 10, to make it easy
to insert extra lines, should this become necessary.

REM remarks or comments

Any line beginning with REM will be ignored when the
program is executed. Such lines are used to help make the
program more understandable. An alternative to REM is
‘I For example, line 10 above could be written:

10! THIS PROGRAM CALCULATES 2 +2

Order of execution

HEKTOR wiil execute the statements in a BASIC program
in numerica! order of line number unless some statement
tells it to do otherwise. Statements which do so are
described in Subsection 7.3.6 ‘Flow-of-control state-
ments’. Lines do not need to be typed in numerical order.

STOP

This instruction stops the execution of the program and
returns control to the BASIC command mode. It can be
inserted at the end of a program, or at any point within a
program, if appropriate. STOP is optional at the end of a
program. The program will stop anyway if it has no more
instructions to execute.

7.3.2 Aline of BASIC

Lines, statements and multiple statements

A ’line’ of BASIC, starting with a line number, may be up
to 253 characters long. (It will then extend over several
screen lines.) It may include several BASIC statements,
each separated by a colon, *:".

Example:

20X=2+2: PRINT X

30 C=A+B: REM FORM THE SUM
In general, as many statements as will fit may be combined
in one line, including REM statements. However state-

ments containing the instructions GOTO, STOP, RETURN
and IF (to be described later) must be last on a line.

Spaces within lines

Spaces may be inserted freely to improve the readability of
a statement. They are ignored by HEKTOR. (The obvious
exception is within a BASIC keyword: PR INT will be
misinterpreted, and GO TO will not be accepted as
GOTO.) Thus line 20 above could be written as:

20X=2+2:PRINTX

It is considered good programming practice to use spaces
to keep a program easy to read, unless there are severe
space limitations.

Syntax of BASIC

Example:
10 REM SQUARES OF NUMBERS
20X=2
30Y=X¥*¥X
40 PRINT X, Y
50 X=X+1
60 GOTO 30

This program will print a list of numbers and their squares
until itis stopped by pressing the| BREAK|key. Itillustrates
many of the features of the syntax of the BASIC language,

which will be described in the next few sections. State-
ments contain variables, such as X and Y, which can take
on many different values. There are also constants, such as
1, 2, 30. Variables and constants are combined in ex-
pressions, such as X¥X and X+ 1. They are combined
using operators, such as * (multiply) and +.

Statements also contain keywords, such as PRINT and
GOTO. (The statement PRINT X, Y causes the current
values of X and Y to be printed. The statement GOTO 30
causes line 30 to be the next line executed.) -

7.3.3 BASIC variables

There are four types of variable in HEKTOR BASIC,
numeric variables, arrays, string variables and
system variables.

Numeric variables
A numeric variable takes on integer values in the range
—32767 to +32767. It is denoted by one of the 26 letters
AtoZ
Examples:

A, C, X are valid numeric variables

AB, C2, N.| are invalid

Arrays

An array is a list of numeric variables referred to by a single
name. Each of the separate elements of an array is iden-
tified by using an index. For example, A(4) refers to the
fourth element in the array A(index). There are 26 allow-
able arrays, whose elements are denoted by symbols
A(index) to Z(index). The index can be a numeric variable,
an integer constant, or any numeric expression.

The index must always be in the range 1 to 127.

Note that the numeric variable A and the array A (index)
can both be used without confusion in the same program.
Examples:

C(X), F(6),and G(l + 3) are valid uses of an array variable.
C(200) is not valid because the index is too large.

DIM dimension statements

Before using an array variable, HEKTOR must be told how
much storage to set aside for it (i.e., what is the maximum
size you will want for the index?). This is done using a DIM
(for dimension) statement. DIM statements must not be
executed twice.

Example:
DIM A(8)
declares that the array A(index) contains 8 elements. Thus
its index can range from 1 to 8. The number used in the
DIM statement can be any integer between 1 and 127, or
any numeric expression with a value in that range.
Examples:
DIM C(120);
DIM B(25%*4)
DIMT(X + 10) isvalidif X + 10 is between 1 and 127.

are valid

59

String variables

A string variable takes on values which are letters, num-
bers, or other characters, stored as their character codes.
It may be up to 254 characters in length. Thus abed,
TM221, $4.83 are all valid values for string variables. A
string variable is denoted by one of the 26 symbols AS$ to
Z$. A string constant is denoted by enclosing it within
either single quotes * *, or double quotes ** . (Mixed
quotes, ”’, or ' " are not valid.)

Examples:
A9, C$, X$ are valid string variables
BC$, DES$ are invalid

“"HOW ARE YOU”, “Is it 2:30" are valid string
constants

“ERROR’ is invalid (mixed quotes)

Assignments: LET ... =
The value of a variable is set or changed using an assign-
ment statement of the form:

LET variable = expression

Example:
LETX=5
or simply
X=5
The keyword ‘LET" is optional. Its use helps to clarify the
meaning of the statement, which can be interpreted as ‘let
the value 5 be assigned to the variable X'. The use of the
'=" should be distinguished from its meaning in algebra,
where it would be ‘is equivalent to’. Thus the statement:
X=X+1
in BASIC means ‘let X take on a value one greater than its

previous value’. In algebra, such a statement would be
self-contradictory.

Examples:
integer variables: G =X
Y=3+2
array variables: H(3) =43+ X

LET K(2%Y) = L(3*Y)
T$ = THIS IS THE END’
LET V$ = “Did you say /@£%&?"

string variables:

Initialization

When you start the execution of a program using the RUN
command, the value of all numeric variables is set to zero
and the value of all string variables is set to the ‘null string’,
i.e. no characters. RUN also deletes any arrays set up in
previously run programs, but does not initialize arrays in
the current program. That is because the BASIC inter-
preter does not know about them until it reaches the state-
ment in which they are dimensioned. Unless you explicitly
give array elements a value using assignment statements,
they will have values which are unpredictable.

System variables

The three sets of variables defined above are general-
purpose variables which you can use within programs as
you wish. In addition to them, there are a number of
special-purpose variables defined by the system, which
you can use.

Some of the system variables are ‘read-only’ variables. In
effect they are ‘windows’ which allow you to see the value
of some parameter in HEKTOR. You can use these vari-
ables in expressions or PRINT statements, but you cannot
change their value using assignment statements.

60

The remaining system variables are ‘read/write’ variables.
You can change their values using assignment statements,
although in some cases there is only a limited set of allow-
able values. All the read/write system variables have
‘default’ values which are set by the system when you
enter the BASIC interpreter. All but TIME and BAUD are
reset to those default values by the RUN command.

Read-only system variables
CoL Its value is the current column of the display.

KSTAT Keyboard status. its value is O if no key is
being pressed, and the ASCil value of the key

if one is being pressed.

ROW Its value is the current row of the display.

SIZE Its value is the number of bytes of available
memory.

STAT Its value represents the state of the peripheral

board pushbuttons, as follows:

Neither button pressed, STAT = 0;

PD button pressed, STAT =1;

PL button pressed, STAT = 2;

Both buttons pressed, STAT = 3.

Reading STAT also automaticaily resets the
latch of the PL button.

SwW Its value is the numeric equivalent of the
peripheral board switches. If the switches are
taken to represent the eight bits of a binary
number, the value of SW is the denary
representation of that number.

Example:

If the left-most two switches only are set to
1, the value of SW will be 128 + 64 = 192,

Read/write system variables

BAUD The value of this variable determines both the
bit rate and the parity of data sent to the serial
line. (This is needed if, for exampile, a printer
is connected to HEKTOR.) The default value
of BAUD is 0, which gives a bit rate of 1200

‘baud and parity = space. For all other values,
use Table 7.1.

Table 7.1
Values of the system variable BAUD

Parity
Bit
rate Space Mark Even Odd

1200 0 128 192 224
300 256 384 448 480
110 512 640 704 736

Values other than those in this table will
produce unpredictable results! The value of
this variable is not reset by the RUN com-
mand.

Example:

BAUD =256
This sets the bit rate to 300 and the parity to
‘space’.

LED Its value is the numerical equivalent (denary)
of the peripheral board LEDs, with each LED
taken to be one bit of an eight-bit binary
number.

Example:
The statement
LED =192

will light up the left-most two LEDs
(192 =128 + 64)

PW Print width. This variable sets the number of
columns allocated to each number printed by
a PRINT statement. The default value is 6.
With the default value, the statement PRINT
5,20 would produce the output:

| 9| 20|

[[
6 spaces 6 spaces

With PW =2, the same statement would
produce the output:

i botit
2 spaces 2 spaces

PW only affects the column width allocated
to numbers, whether output directly as in the
example, or as a numeric variable or array. For
example, it determines the number of
columns allocated to X and G(l) in PRINT X,
G(1). It has no effect on the format of string
variables or string constants. PW should be
in the range 0 to 63.

RANDOM The value of this variable is used as a starting
point by the function RND which generates
pseudo-random numbers. For details of its
use see the description of RND in Subsection
7.3.5.

This variable determines the screen format.
For SCROLL=0 the screen ‘scrolls’, i.e.
when the screen is full, a new line is added at
the bottom and all other lines move up one.
With SCROLL =1 (or any other non-zero
number), when the screen is full the cursor
moves back to the top, and all lines remain
where they were until they are overwritten.
The default value is 0.

TIME There is a ‘clock’ in HEKTOR which is in-
cremented every 100th of a second. The
value of TIME is the current value of the
clock. The clock is reset to O when you enter
the BASIC interpreter and runs continuously
thereafter, except while a cassette tape is
being read. When it reaches its maximum
value of 32767, it jumps to its minimum of
—32767 and continues counting. It can be
setto any desired value within its range using
an assignment statement (e.g., TIME = 100)
and will continue counting from that value.
It is not reset by RUN commands.

SCROLL

7.3.4 BASIC operators and expressions

BASIC variables and constants can be combined to
form expressions using operators.

Numeric operators and expressions
There are four numeric operators in HEKTOR BASIC
+ add — subtract
* multiply / divide
These operators all produce results which are 16-bit

integers (—32767 to +32767). The results of division are
rounded down to the nearest integer.

Examples:
100/8=12, 3/2=1, 4/8=0

Within an expression, * and / are evaluated before + and
—, unless modified by parentheses. Otherwise, ex-
pressions are evaluated from left to right.
Examples:
2+3-4 Both operators have the same priority,
Y so the expression is evaluated from left

D -4, to right.

1
2+3%2 The multiplication is evaluated before
v the addition
2+ 6
H_J
8
(2+3)*2 The contents of the parentheses are
—~— evaluated first, changing the order of
5 *2 priority of the operators.
L_Y_J
10
Examples:
X+3; 4%Y-H; N(B) ¥N(H)+X-2;

(A-4)/(B*8)

Relational operators

Relational operators are used to compare the magnitudes
of two arithmetic variables, constants or expressions.

> greater than < less than
>= greater than <= less than or
or equal to equal to
= equal to <> notequal to
Exarnples:
X>3

Y<=(X+4)/A(3)

Relational operators can only be used in IF.. THEN in-
structions (Subsection 7.3.6). An expression such as X>Y
can take only two values, ‘true’ and ‘false’.

String operators and expressions

String expressions can be formed from string variables or
constants using the ‘&" symbol for concatenation. (The
symbol & is called the ampersand.)

Example:

A$ ="HELLO" & "THERE"
will produce the same value for A$ as
A% = "HELLOTHERE"

7.3.5 BASIC functions

A BASIC function is an expression of the form KEY -
WORD (argument(s)), where the KEYWORD is one
of the set described below. Each argument is either
a numeric type (X,Y,Z) or a string type (X$). It can
be either a variable, a constant or an expression. A
function is a built-in routine which acts on its argu-
ment(s) and returns either a number or a string. If it
returns a string it is called a string function, and if it
returns a number it is called a numeric function.
There are, however, some numeric functions whose
arguments are strings and vice-versa.

61

Numeric functions

ABS(X)

RND(X)

ASC(X$)

VAL(X$)

LEN(X$)

Returns the absolute value (or modulus)
of X.
Example: ABS(-5) is 5, ABS(10) is 10

Returns a pseudo-random integer be-
tween 1 and X inclusive. Thus RND(20)
will give a random integer between 1 and
20. X must be greater than or equal to 1.
When used repeatedly within the same
program, RND will return different num-
bers. The function RND uses the system
variable RANDOM as a ‘seed’ or starting
point. When RND is used it changes the
value of RANDOM, so that when it is next
used, RND will produce a different result.
However, the command RUN resets
RANDOM to its default value of zero so,
if the program is run a second time, the
same sequence of numbers will be
generated. To produce different
sequences of numbers from RND when a
program is re-run, you must change the
starting value of RANDOM
program.

Returns the ASCII character code for the
first character of X$.

Y =ASC(“A”) the value of
Y is 65, the ASCII code for A.

Y = ASC(HELLO"") the
value of Y is 72, the ASClI
code for H.

Examples:

This function is used to transform a string
expression containing a series of digits
into a number.

LET X$ ="-32"

LET Y=VAL(X$) then Y
will have the integer value
-32.

Returns the number of characters in the
string X$.

Example:

Example: PRINT LEN(“THIS IS A

TEST”) will print 14.

String functions

CHR$(X)

LEFT$(X$.Y)

RIGHT$(X$.Y)

MID$(X$.Y.Z)

62

Returns the character whose ASCII

code is X. This function is the inverse of

ASC. X should be between 1 and 255.

Example: PRINT CHR$(80) will
print P, the letter whose
ASCI| code is 80.

Returns the left-most Y characters of

X$§

Examples: X$ ='HELLO’
LEFT$(X$,3) is HEL
LEFT$(X$.1) isH
LEFT$(X$.4) is HELL

Returns the right-most Y characters of

X$.

Examples: X$="HELLO"”
RIGHT$(X$,4) is ELLO
RIGHT$(X$,1) isO
RIGHT$(X$.,2) isLO

Returns Z characters from X$, starting
with the Yth character.

in the

Examples. X$ is "HELLO"
MID$(X$,3,2) isLL
MID$(X$,1,5) is HELLO
MID$(X$,41) isL

STR$(X) This function is used to transform a
number stored as an integer to one

stored as a string.

Example:

STR$(100) has the value “100". If
A=300 and X$="THERE ARE" &

STR$(A) & “PEQPLE", then the value
of X$ = “THERE ARE 300 PEOPLE".

7.3.6 Flow-of-control statements

Linesin a BASIC program are executed in sequential
order of line number unless an instruction appears
altering this order. There are four such instructions
in HEKTOR BASIC. They correspond to the four
cases:

(a) asimple transfer from one part of a program to
another (GOTO)

(b) a transfer to another part of a program
followed by a return to the point of transfer
(GOSUB...RETURN)

(c) repeated execution of a sequence of state-
ments (FOR...NEXT)

(d) a statement to be executed, if some condition
is true (IF...THEN).

GOTOn

This statement causes execution to jump to line n. A
GOTO n statement must be the last one on a line. n may
be a positive number or a numeric expression with values
in the range 1 to 32767, and must be the number of a line
in the program.

GOTO 20
GOTO A*6+B

Examples:

GOSUB n

This statement is used in conjunction with RETURN to
transfer to and from subroutines. GOSUB is similar to
GOTO except that the current line number is stored.
GOSUBs may be ‘nested’, i.e. further GOSUBs may be
used before the RETURN which terminates a previous
GOSUB.

Examples: GOSUB 200

GOSUB A¥6+B

RETURN

A RETURN statement causes execution to jump to a state-
ment following the corresponding GOSUB statement. For
nested subroutines, RETURN transfers control to the
statement after the most recently executed GOSUB to
which control has not yet been returned.

Example:
10 REM PRINT X TO THEN, FORN=2,30R 4
20 INPUT X, N
30 GOSUB N*¥100
40 PRINTY
50 STOP
200 Y =X*X: RETURN
300 Y =X*X*X: RETURN
400Y = X¥X*¥X*X: RETURN
Note the use of the STOP statement to prevent the
program from continuing into the subroutines.

FOR...NEXT

The FOR and NEXT instructions are used to set up a ‘Joop’
—a section of program which is executed repeatedly.

The general form is
FOR assignment TO num.expr. STEP num.expr.

NEXT variable
Example:
10 REM PRINT NUMBERS FROM 1 TO 10 AND
THEIR SQUARES
20FORX=1T010
30 PRINT X, X¥X
40 NEXT X

In this example, statement 30 is executed repeatedly: once
with X =1, once with X = 2, etc. ending with X =10. The
general form of a FOR...NEXT loop is:

FORX=ATOBSTEPC

Program lines to be
executed repeatedly

NEXT X

The loop is executed first with X = A. When the ‘NEXT X’
statement is reached, X is incremented by C. It is then
tested to see whether or not it is still within the range A to
B (inclusive). If so, the loop is executed again. If not, the
statement following NEXT X is executed.

Any numeric variable can be used in place of X. Any
numeric variable, constant or expression can be used in
place of A, B and C. The values of B and C are stored when
the FOR statement is executed, so that they can be tested
later. Thus changing their values during execution of the
loop will not affect the loop operation. C can be positive
or negative. (C =0 will produce a never-ending loop.)
‘STEP C’ may be omitted if the desired step is +1.

The statements within a FOR...NEXT loop may contain
another FOR...NEXT loop, which may, in turn, contain
another FOR...NEXT loop, etc. Such ‘nested’ loops should
use different index variables as otherwise the NEXT state-
ment might terminate the wrong loop. When a NEXT X
statement is executed, the name of the variable is checked
with that of the most recent FOR instruction. If they do not
agree, that FOR is terminated and the next most recent
FOR is tested. If they do agree, the variable X is incremen-
ted and tested as described above.

IF condition THEN statement
The statement following THEN is executed only after
evaluating the condition and finding it to be TRUE.

Example:
IF X>Y THEN PRINT X

X will be printed only if it is greater than Y. If not, the
program will simply go on to the next line. Only one state-
ment is allowed following THEN, and moreover, the IF
statement must be the last in a line. If you wish to execute
more than one statement using an IF statement, use a
GOSUB or use a GOTO, transferring control to the desired
statements. The condition tested by an IF statement is
normally a comparison of two numeric variables, con-
stants or expressions using the relational operators (see
Subsection 7.3.4).

Examples:
IFX+Y>=0THEN GOSUB 20
IFX=2+3+ZTHENY =20

However, it is also possible to compare strings using rela-

tional operators. Their ASCII code values will be com-
pared, character-by-character.

Example:
IF X$ ="END” THEN GOTO 100

7.3.7 Input/output instructions

Within a HEKTOR BASIC program, the ‘standard’
devices for input and output are the keyboard and
the television screen, respectively. The principal in-
structions for handling them are PRINT and INPUT.
There are also other, more general-purpose, instruc-
tions, which allow a variety of devices to be used for
input and output.

PRINT

The general form of a PRINT statement is:
PRINT expression 1, expression 2, etc.

Examples:
PRINT X
PRINT X, Y, C$, “THE MOON (S BLUE"
PRINT H$ & CHR$ (Y) &T$. X+ (Y—-3) /6

Each expression will be evaluated and output to the
screen. Numeric results will be printed at the right of a
space whose width is the current value of the system vari-
able PW (print width). The default value of PW is 6. If PW
is smaller than required for a particular number then extra
space will be allowed as required for that number only.
Subsequent numbers will use the width set by PW.

Successive PRINT statements in a program can be made
to produce output either on the same line on the screen or
on a new line. If a PRINT statement ends in a comma the
next PRINT statement executed will continue on the same
line, as though both were part of a single statement. A
PRINT statement which ends without a comma will move
the cursor to the beginning of a new line after printing its
last expression.

Examples:
10FORX=1T04
20 PRINT X, X*X
30 NEXT X
This program will print the numbers from 1 to 4 and their
squares, with each pair printed on a separate line.
10FORX=1T0 4
20 PRINT X, X*X,
30 NEXT X

This time the pairs of numbers will be printed on the same
line.

63

The statement

PRINT
will produce a blank line (unless a previous PRINT state-
ment has left the cursor in the middle of a line, in which
case that line will be terminated).

TAB (1)

An expression of the form TAB(I) can be inserted in a
PRINT statement at any point. It will move the screen
cursor to the Ith column, where | = 1 to 64. The argument
| can be an integer constant, variable or expression. TAB
cannot be used to make the cursor go backwards. If the
value of | is less than the current column, the cursor will
move to the Ith column on the next line.

Example:
10 FORI1=1TO 25
20 PRINT TAB(l), “HELLO”
30 NEXT |

This program prints a diagonal line of "HELLO"'s across
the screen.

INPUT
The general form of an INPUT statement is:

INPUT variable 1, variable 2, etc.
When HEKTOR is expecting an input, the value of the first
variable must be typed in followed by RETURN, followed
by the value of the second variable and RETURN, etc.
When all values have been typed in HEKTOR will continue
executing the program. Since there is no indication that
HEKTOR is expecting input, itis helpful to precede INPUT
statements with PRINT statements requesting the
required input.

The variables may be numeric or string variables, or array
elements. The maximum size of string variables which can
be input from the screen is 77 characters.
Example:

10 PRINT “TYPE VALUES FOR X, Y, Z§"

20 INPUT X, Y, Z$

RUN

TYPE VALUES FOR X, Y, 2%
(you then type)

30

40

HELLO HEKTOR!

The stored values of X, Y and Z$ will be, respectively 30,
40 and "HELLO HEKTOR!".

SOUND (X, Y)

This instruction, when executed, produces a sound from
HEKTOR's sound generator which is played through the
TV loudspeaker. The length of the sound is set by Y, in
multiples of 100th of a second. The pitch of the sound is
set by X. The period of the pitch is X times 250
microseconds.

Example:
SOUND (4, 100) produces a sound of period
4 x 2560 microseconds, or 1/
1000th of a second (i.e. a
frequency of 1000 Hz). The
sound lasts for 100 x 1/100 =1
second.

X and Y can be numeric variables, constants or ex-
pressions, but must be in the range 1 to 255.

64

General purpose input and output instructions

The PRINT and INPUT statements are used for output to
and input from the TV screen and the keyboard respec-
tively. However, within a program, data can also be sent
to and from a cassette recorder, or a printer or other device
connected to the serial line. To do so there are more
general input/output instructions, PRINT # n, and
INPUT # n. Whereas HEKTOR is always ready to send
data to the TV screen or receive it from the keyboard, this
is not so for the other devices. Before they are used either
for input or output, a channel must be opened with the
OPEN instruction. If a channel is subsequently to be used
for another purpose it must first be closed using the
CLOSE instruction and then reopened.

OPEN # n;

This command opens a channel. You must (a) choose a
channel number, n, between 1 and 9, (b) specify the
device the channel leads to, (¢) specify whether you want
input or output, (d) for cassette tape, specify a file name
to be used as a label.

Example:
The statement OPEN # 3; CR, |, ‘TEST DATA’

opens channel number 3 on to the cassette recorder (CR),
for input (1), in a file labelled ‘TEST DATA'". The general
form of the OPEN # n statement is:

OPEN # n; device, access, name

where n can be any number between 1 and 9 (or a numeri-
cal expression with a value between 1 and 9), device must
be either CR for cassette recorder or SL for serial line,
access must be either | for input or O for output, and name
is a string of characters up to 200 long (or a string variable
or expression). Note that # n is followed by a semi-colon.

Within a program, for a given channel n, OPEN # nshould
be used before using either the INPUT # n or PRINT #
n statements. If the channel specified is a tape recorder,
when OPEN # n is executed HEKTOR will display either
the message SET RECORD (for output) or SET TO PLAY
(for input) on the screen. You should then operate the
controls of your cassette recorder accordingly, and press
[RETURN]to signal that you have done so. For input, HEK-
TOR will search the tape until it has found the file labelled
with the correct name and then stop the tape until it
reaches the first INPUT # n statement.

CLOSE # n;

This command closes a previously opened channel to
make it available again for another purpose. n must be a
number, variable or expression with a value between 1 and
9.

PRINT # n;
The general form of a PRINT # n statement is:
PRINT # n; expression 1, expression 2, etc.

This statement is used in exactly the same way as the
PRINT statement. When a PRINT statement is executed,
each expression is evaluated and the resulting data is sent
to channel n, which must previously have been opened for
output using the OPEN command. The total data from a
PRINT # n statement forms a single ‘record’. n can be a
number, variable or expression with a value between 0 and
9inclusive. Channel O is the TV screen and is always open.
Thus PRINT # O (and also PRINT # n where channel n
has not been opened) is equivalent to PRINT.

If the specified channel is the cassette recorder, each ex-
pression will be stored as a string with its length as a prefix.

For tape, the total maximum length per print statement
should be 253 characters. This is not checked, so if the
maximum is exceeded it will not be possible to retrieve
some of the characters with an INPUT statement.

Example:
10 REM CALCULATES THE SQUARES OF
20 REM 100 NUMBERS AND STORES ON TAPE
30 OPEN # 5; CR, O, 'SQUARES’
40 FOR =110 100
50 PRINT # 5; 1%|
60 NEXT |

INPUT # n;
The general form of an INPUT # n statement is:
INPUT +# n; variable 1, variable 2, etc.

This statement is used in the same way as the INPUT
statement, except that input is expected from channel n
(which must previously have been opened with an OPEN
command). Channel numbers can be any number be-
tween 0 and 9. Channel 0 is the keyboard and is always
open. Thus INPUT # O (or INPUT # n where channel n
has not been opened) is equivalent to INPUT. When input
is taken from the cassette recorder, the whole of the next
record is read (the entire output of a PRINT statement).

65

I11

L

e
S

8 HEKTOR SYSTEM HARDWARE

This section contains a technical description of the
HEKTOR system hardware. It includes a description
of the circuits and operation of each of the
microcomputer subsystems, and information to en-
able expansion of HEKTOR.

8.1 The microcomputer bus

Table 8.1 lists the full set of microcomputer bus sig-
nals available on the HEKTOR board edge connec-
tor. The corresponding pin on the microprocessor is
also listed, where applicable. Note that the address
bus is available in two forms. (AD0O-7, A8-15) is the
conventional 8085 address bus, with (ADO-7)
being the multiplexed address/data bus lines.
(A0-7, A8-15) is the full demultiplexed 16-bit
address bus, where (AO-A7) are the address bus
lines supplied by the memory subsystem’s address
latch.

The edge connector signals are unbuffered, but
there are pull-up and puli-down resistors connected
to some of the bus lines, as shown in Table 8.1. Note
that the microprocessor signals (X1, X2, SOD, SID,
TRAP, RST6.5, RST5.5, and RESET IN) are used by
the HEKTOR hardware, but are not available exter-
nally. The status signals (SO, S1) are unused.

8.2 The microprocessor

The microprocessor is an 8085A-type device, con-
nected to the microcomputer bus as shown in Table
8.1. There is a 6.048 MHz crystal connected to the
X1 and X2 signal pins on the microprocessor. This
defines the system clock frequency as 3.024 MHz,
and a signal of this frequency is output from the
microprocessor on the CLK bus line.

The RESET IN pin of the microprocessor is connec-
ted to the RESET key and power-on reset circuit
shown in Figure 8.1. The combination of R and C
provides a delay of at least 100 milliseconds follow-
ing switch-on before the RESET IN signal rises suf-
ficiently to enable the execution of instructions by
the microprocessor (starting at address 0000

(hex)).
+5V
Vee
5V —
PSU RESETIN
oV IC13
Vss 8085A

Figure 8.1 Reset circuit

Table 8.1 Edge connector signals
Component 8085 Signal name Wiring 8085 Signal name
side pin pin side pin
oin
1 10V unreg. DC power 2 10V unreg. DC power
3 power ground 4 20 Signal ground
5 32 RD (47kQ pull-up) 6 19 AD7
7 31 WR (47kQ puil-up) 8 18 AD6
9 30 ALE 10 17 AD5
11 11 INTR 12 16 AD4
13 3 RESET OUT 14 15 AD3
15 37 CLK 16 14 AD?2
17 28 A1b 18 13 AD1
19 39 HOLD (3.9kQ pull-down) 20 10 INTR (3.9kQ pull-down)
21 38 HLDA 22 7 RST7.5 (47kQ pull-down)
23 35 READY (3.9kQ pull-up) 24 12 ADO
25 34 [O/M 26 2 AO
27 27 Al4 28 5 A1
29 26 A13 30 6 A2
31 25 A12 32 9 ||0Cin1829n A3
33 24 A1l 34 12 A4
35 23 A10 36 15 (74LS373) Ab
37 22 A9 38 16 A6
39 21 A8 40 19 | A7

8.3 The memory subsystem

The on-board memory of HEKTOR has been desig-
ned to offer considerable flexibility in the amounts of

2V F_

ADO 3 D(\)/SS cho 2 AO
AD1___ 4| nle Al
AD2 7|, 018 A2
AD3 __ 8 L A3
AD4__ 13i,, i 0ah2 A4
ADS _ 14{ . 05118 A5
ADE 17| 7418373 LS A6
AD7 18} o2 A7

LE OE
ALE
HLDA +5V
IO/M_

15 22K0

A0 10}, cs o1l CE (MEMSKTO)
AT 11 0ol2 CE{MEMSKT 1)
A2 12). D3l3 CE (MEMSKT2)
A3 3]0 D4 CE (MEMSKT3)
A4 14| o5l CE (MEMSKT4)

17 el CE (MEMSKTS)

7asies - CE (TV LATCH)

o8 9 CE (8155)
Vss Vee

2.2KQ

L 0000

Figure 8.2 Address decoding circuitry

Table 8.2 Address decoding

ROM and RAM that can be fitted. The flexibility is
achieved by the use of an FPROM for address
decoding, and by the use of 24-pin sockets which
will accept a variety of ROM and RAM devices.

The address-decoding circuitry is shown in Figure
8.2. IC12 latches the contents of the AD bus lines
when the microprocessor supplies an ALE pulse. At
this time, the AD lines are carrying the lower 8 bits
of an address, and so the AO0-7 outputs of the latch
retain this address information throughout the mem-
ory access cycle. By connecting HLDA to the output
enable of the latch, these address outputs can be
disabled if, for example, an external device wishes to
gain control of the bus in order to directly access
memory. IC7 is a 32 x 8 bit FPROM. It is enabled
(CS) at the beginning of every memory access cycle
and decodes the higher-order address (A10-14) to
provide eight chip enable signals within fifty
nanoseconds. The chip enables that it generates
select one of the six memory devices (mounted in
MEMSKT 0-5), the TV latch circuitry or the 81565
RAM/10 chip. The FPROM decoding map used in
HEKTOR is shown in Table 8.2.

Each of the six memory devices is mounted in a
24-pin MEMSKT. For all but two pins, the connec-
tions required are the same for several types of
ROM/RAM device. The address lines (A0-A7) are
the outputs of the address demultiplexing latch
(Figure 8.2) and together with the address bus lines
A8 and A9, define 1K addresses within the device.
The eight data lines are connected directly to the AD
bus lines so that addressed data is output to the bus
when RD is asserted by the microprocessor. The CE
signal for the device is one of the chip enables out-
put by the memory decoder (Figure 8.2).

The two remaining signal pins, numbers 19 and 21,
have a function which depends on the device actu-
ally mounted in the socket, and there are link holes
on the HEKTOR pcb so that any of (+5 V, WR, or

EDCBA Device enabled Effective address for device (hex)
000XX MEMSKT 0 O000-OFFF, 8000 -8FFF
001 XX MEMSKT 1 1000-1FFF, 9000 -9FFF
01000 TV LATCH 2000-23FF, AOOO-AS3FF
01001 8155 2400-27FF, A400-A7FF
01 01X MEMSKT b 2800-2FFF, ABOO-AFFF
01 10X MEMSKT 4 3000-37FF, BOOO-B7FF
01 11X MEMSKT 3 3800-3FFF, B8OO-BFFF
10X XX — 4000-5FFF, COOO-DFFF
1T10XX — 6000-6FFF, EOOO-EFFF
111 XX MEMSKT 2 7000-7FFF, FOOO -FFFF

69

A11) can be connected to pin 21, and either of (ov
or A10) can be connected to pin 19. The table in
Figure 8.3 shows which connections are required
for four types of device, two being ROM/EPROM
and two being RAM devices. The links shown are
those for MEMSKT 0-2, where 4K masked ROMs or
2732-type EPROMS are fitted to HEKTOR as stan-
dard. For the 2K RAMs in MEMSKT 3-5, fitted as
standard, the links are pin 21-WR, pin 19-A10.

+5V o3
ov ﬂS
WR 2
A10 4

A11 o ﬁj

12 24 i21 T1J9

VSS VCC

A0 8 4KROM | A11 (1) | At0 (4)
—_— 0
Al up 2K ROM | VPP (3) | A10 (4)
TKRAM | WE(2) | T (3
A2 6, WE (3)
A3 5 2K RAM | WE (2) | A10{4)
A a3
A4 1/
A5 3
AS MEMSKT

A6 2|6
A7 U g
A8 23/ pg
A9 22|,

CE OE DO D1 D2 D3 D4 D5 D6 D7
_ 18] 20[S[16T 11 13 14] 15] 16] 17
CE (MEMSKT)
D
ADO
AD1
AD2
AD3
AD4
AD5
ADB
AD7

Figure 8.3 MEMSKT decoding

The third component of the memory subsystem is
the 8165 RAM/10 device, connected as shown in
Figure 8.4. This device is purpose-designed for use
with 8085-based microcomputers. It has on-chip
address demultiplexing, and so most address/data/
control pins connect directly to their corresponding
bus lines (i.e. ADO-7, RESET, ALE, RD, WR). With
the chip enable supplied by address decoder (IC7),
the 8155 appears as a 256-byte RAM device, res-
ponding to addresses in the range 2400 to 27FF
(hex). As this range covers 1024 addresses, each

70

CE (8155)
BUS: 8icE
RESET OUT Zi - of2!
PORTA § g
ALE 11 :
ALE Ues
A15 7{tomM
RD g RD 0 29
R E 10] o PORTB i §
36
ADO 12| 550
AD] LEIIN oL
PORTC : %
AD2 14 a2 5=
AD3 15 AD3
AD4 16|50
A ~1ADS IC14
ADB '8))06 8155
AD7 190507
CLK 3N
S7out
TRAP vss vee
70 0
~ +5V

Figure 8.4 8155 device connections

RAM location XY responds to any of four addresses
(24XY, 25XY, 26XY or 27XY). Only addresses of the
form 27XY (hex) are used by the HEKTOR software.

The 1/0 addresses for this device are determined by
the connection of the I0/M pin on the 8155 device
notto the |0/M bus line but to the A15 bus line. This
enables the 1/0 registers in the device to be
addressed as memory, rather than as 1/0 devices (for
which only the IN and OUT machine instructions are
operable). With the connection used, the addresses
XY00-XY05 (hex) access the five 1/0 registers
where XY is any of A4-A7 (hex). HEKTOR system
software uses the addresses A400-A405 (hex), for
the control register, port A, port B, port C, and the
two timer registers, respectively. Note that the con-
nection of the timer pins (TIN and TOUT), to the bus
CLK and microprocessor TRAP interrupt pin, means
that the microcomputer has a built-in programmable
real-time interrupt. This is used by the HEKTOR sys-
tem software to provide the ‘single-step’ facility (see
Sections 4 and 9).

8.4 The keyboard interface

The keyboard contains sixty keys, of which two
(RESET and BREAK) are connected directly to in-
dividual microprocessor pins (RESET IN and
RST6.5, respectively). The remaining keys are arran-
ged as part of an 8 x 8 matrix as shown in Figure 8.5.

21

22

23

24
PORTA |95

26

27

28

s MO0 7

6 s laloly [v JRET|CTRL 15k0

35 L1 lo [wlp kB L
SPACE

34 L2 {0 KE A WL KN

J33 k3 L-kRKS LM HOME

PORTB 135 |4 IALT kD h: L. j=

L~

1 SHIFT|SHIET
N\ N N

31 K KNVKY KF KZ K.

30 K6 [AU KG A X K/

1
LI A O N NG RN | SHIFT LOCK

|

+5V

+5V

BN RESET 1k a7 T
+ >

€13
8085A 4700 l J_
BREAK Towe =

8
RST6.5

Figure 8.5 Keyboard interface

Reading the keyboard operates as follows. Port A of
the 8155 device is programmed permanently as an
8-bit output port and Port B as an input port. (Port
C is also an output port but is used to control the TV
and cassette interfaces.) By outputting a bit pattern
on Port A for which just one bit is 0, and then by
reading the data at port B, any key depressed on the
selected row of the matrix can be identified by the
corresponding bit at port B being O. The keyboard is
therefore scanned row by row to detect and identify
any key depression. Note that special precautions
have to be taken for the CTRL and SHIFT keys. If
these were connected on a row of the matrix using
the resistive coupling method, then when CTRL,
SHIFT and Q are pressed, this combination would
be indistinguishable from the CTRL, SHIFT and U
combination, for example. This is avoided by
decoupling the CTRL and SHIFT keys with diodes,
as shown.

8.5 The TV interface

The TV interface centres around the use of the
SFF96364 controller device. A block diagram of the

interface is shown in Figure 8.6. The screen display
consists of sixteen lines of sixty-four characters,
which are stored as ASCII codes in the 1K RAM.
Each characteris displayed asa 7 x 5 dot matrix with
the CHAR ROM containing the patterns for each
ASCII code.

The display is refreshed as follows. The
OSCILLATOR supplies one pulse (F/8) for each
character position on each line of the display. The
controllier addresses the RAM, and the ASCII code
supplied is latched into the DISPLAY LATCH. The
display pattern for that code is looked up in the
CHAR ROM, using the ASCII code combined with
a 3-bit address from the controller to access one (of
the seven) rows of dot patterns for that character.
The row pattern is loaded into the SHIFT REG,,
where it is serially output on the VIDEO line, using
a clock frequency (F) which is eight times the
character frequency F/8. The dot pattern stream is
mixed with the line and frame SYNC signal to
provide a composite video signal. This is available
directly, for use with a video monitor, or modulated
for use with a standard UHF TV receiver.

The SYNC signal is generated from the nominal 1
MHz Q1 input to the controller. In HEKTOR, the bus
CLK signal of 3.024 MHz is divided by 3 to give a
1.008 MHz frequency. This leads to SYNC tuning
which is well within the horizontal and vertical syn-
chronization capabilities of most TV receivers. The
INT output of the controller stops the oscillator and
blanks the MIXER during line flyback. The cursor is
displayed as a result of the PT output of the
controller disabling the CHAR ROM, so as to
produce a line of dots in the otherwise blank line
underneath the character.

Writing a new character to the refresh RAM is a two-
stage process involving the WRITE LATCH. The
microcomputer stores the ASCII code for a character
in the latch by writing to address 2000 (hex).
(Figure 8.6 shows the relevant signals: the CE from
the address decoder, and the WR, ADO-7 bus sig-
nals). Having written the character, it sends a
control code to the controller by setting bits 1-3 of
port C to 111 (binary) and pulsing bit 0. (Bit 4 of
port C is normally 1; it acts as an enable for the latch
output). The character is then transferred to the
RAM during the next line flyback period, when the
W output of the controller enables the WRITE
LATCH output and simultaneously write-enables
the RAM (assuming bit 4 of port Cis 1).

The special display functions performed by the
controller are executed by the microcomputer writ-
ing a ‘space’ character to the WRITE LATCH, but
with a different control code on bits 1-3 of port C.
The code 001 (binary) causes a ‘carriage return’,
010 causes a 'line feed’, 100 causes ‘cursor left’, 110
causes ‘cursor up’, and 000 causes the screen to be
cleared and the cursor positioned in the top left-
hand corner; the 'home’ function.

71

ADOC-7 4 3 2 1 0 CLK SOD
Maan
~
WR
—_—
—_—
A
< DATA > RAM KADDRESS
S
DISPLAY
LATCH
~——
~— A/\ \ C" \ 4 A
RO A0Q v CZ Ci €0 ST
CHAR ROM [<_ROWIADDR(| __IC8 CONTROLLER ai g\'(\/éDE
- PT 01 NI SYNC
~ Y
78
—~ Fi8 ! g
SHIFT < audio In
REGISTER - [OSCILLATOR
y y y
VIDEO > MIXER X‘T%DRUL_ ——-02W ouT
—e }VIDEO
< ouT
Figure 8.6 TV interface
TO SERIAL TO TV
5-pin DIN INTERFACE , INTERFACE
___SKT7 AV N {ouT)
| 10
| 16 4.7k 0 Ic17
|
R15 8
g
AUX}: —L 6 7 alsop
| i 47k0 IC16
' 3.3k 10nF
: b IC13
oV)2 8200 €17 8085A
JT —L I 5
|
[54 IC17
i 0 + 5
[10MQ 2 SID
| IC17 3
| 13
: £l
|
I
|
I 4
:5 IC16
EAR — o
: 0.1uF
|
N 13 1.14
REM) 2.5 + BV
a
| { 0.1uF
7500 |]
I 8 18 6
! ov IC14
| 8155
1 RELAY
REM)-AL—] BC184L ——— 2APORT C (5)
| 47k0
1
' oV

Figure 8.7 Cassette interface

72

The microcomputer is required to wait before
attempting to write another character or control
function. The hardware allows one character per line
(64 microseconds), but the ‘carriage return’ takes
longer (up to 4.2 milliseconds), and the ‘home’ up
to 132 milliseconds, as the RAM memory has to be
cleared. In fact, the HEKTOR software inserts much
longer delays than are necessary, for readability
reasons.

8.6 The cassette/serial line
interface

The microprocessor’'s SID and SOD direct 1/0 lines
are used for input and output in the cassette/serial
line interface. A multiplexer is used to select either
the cassette interface or the serial line interface at
any instant.

The cassette interface circuit and multiplexer is
shown in Figure 8.7. The multiplexer is controlled by
the logic level on an output bit of the 8155 device
(Port C, bit 5). When this is 1, the cassette interface
is selected. That is, the cassette recorder motor is
enabled (via the relay and REM connector), data
reaching the SID pin on the 8085 is supplied by the
cassette input interface circuit (rather than the serial
interface), and data output from the SOD pin on the
8085 is inhibited from reaching the serial line inter-
face.

The cassette output circuit (Figure 8.7) consists
simply of an attenuator and filter. The signal on the
SOD line is an oscillating logic level in which each
full cycle at 2kHz represents a ‘1" data bit, and each
half-cycle at 1kHz represents a ‘0’ data bit. The con-
ditioned signal is intended to supply the AUX con-
nection on a cassette recorder.

The cassette input circuit accepts a signal from the
EAR connection on a cassette recorder. This signal
is first processed by an all-pass filter and the result
is available on pin 8 of the IC1 (the output of one of
its four operational amplifiers). The all-pass filter has
the effect of reducing the phase distortion
introduced by the record/playback process, thus
restoring the position of the zero-crossings in the
received signal to approximately their original
position. By amplifying and clipping this signal (in
a second operational amplifier and logic gate), the
zero-crossing positions are converted to logic-level
transitions and this logic signal is presented to the
SID input of the 8085. The data bit values are then
recovered by (software-based) measurement of the
intervals between transitions of the SID signal.

The serial line interface (see Figure 8.8) strictly
requires an external +12V power supply to meet the
conditions of the RS232C serial line specification.
For most types of serial equipment, however, the

7-pin DIN
_ _SKT6
| IC16
| 22k0
NG 147515
SERIALH
IN 7 i (IN)

TO CASSETTE
INTERFACE

+ bV

R 5@:3—-—-E
4.7k} .
O.TufF (OuT)

ouTt

IC13

-5V/-12V . 8085A
BUSY) Yo 9{>c10 IRST 5.5
1
! 4.7k0)
|
7
oV o

Figure 8.8 Serial line interface

addition of a single external supply of about =5V on
pin 2 is adequate (see Subsection 8.9).

The BUSY input signal, which will switch between
positive or negative levels of several volts, is con-
ditioned to supply a switched 0/5 V signal at the
RST5.5 input pin of the microprocessor. The HEK-
TOR system software treats this input as a flag sig-
nal, rather than an interrupt. BUSY being low (or
disconnected) inhibits the serial output software
from sending the next output character. The SERIAL
IN interface is identical, except that the SID
microprocessor input is driven when the multiplex-
ing circuit (Figure 8.7) is switched to the serial line
mode.

The SERIAL OUT interface is driven by the
microprocessor SOD line (again assuming the
multiplexer is in serial line mode). Signal condition-
ing converts the switched 0/5V SOD signaltoa +V
signal, where V depends on the power-supply
configuration. The HEKTOR board is linked so that
the SERIAL QUT levels are +5V and —V, where Vis
the external voltage applied to pin 2 of the SKT6
connector. (These links can be re-configured so as
to enable +12 V power supplies to be attached,
giving +12 V signals on SERIAL OUT.)

73

8.7 The power supply

The HEKTOR power supply is shown in Figure 8.9.
The mains connects to a protected transformer,
which supplies 9 Vr.m.s. to the HEKTOR microcom-
puter board via the 6-pin SKT8. The remaining com-
ponents are mounted on the HEKTOR board, in-
cluding the isolating switch, SW1. A full-wave
bridge rectifier provides a ‘raw’ d.c. voltage of 10
volts (nominal). This is smoothed by a reservoir
capacitor, and made available not only to the on-
board regulator but also via pins 1 and 2 of any edge
connector connected to the microcomputer board.
HEKTOR itself takes less than 700mA from the
power supply and an additional 100mA can be taken

from the edge connector.
:;(4N

TRANSFORMER r; SW1

|
9v | o :
f\Jo |

LN sz—jr——

4700uF |(1ov. 100mA)
SKTs] .

— 1t
240V CONNECTOR
U LED 3300

10nF

R |
RESUL gy, 1)

+
il ON-BCARD
10uF BV, 1A)

ON-BOARD EDGE
GROUND CONNECTOR

Figure 8.9 Power supply

The on-board regulator is mounted on a heat sink,
whose fins prevent hot components being accident-
ally touched.

As well as the power supply decoupling capacitors
around the regulator, there are several 100 nF
ceramic capacitors at various points around the
board which also perform this function where the
power supply tracks connect to integrated-circuit
devices.

8.8 Connection to the bus

Itis possible to expand both HEKTOR’s memory and
I/0 capability if off-board equipment is connected
to the microcomputer bus, using the edge connec-
tor. It is not possible to list all the possibilities but
some guidelines can be laid down.

Firstly, there are some electrical considerations. The
bus is unbuffered, so the connections to a bus line

74

should not present a load of more than one or two
LSTTL devices. Bus capacitance will limit the cable
length to a few inches for reliable operation, par-
ticularly for the ALE and CLK bus signals. The ‘raw’
d.c. supply, at 10 V nominal, should not be required
to supply more than 100mA.

The address bus is available in both its multiplexed
and expanded form, and the address ranges
4000-6FFF, and COO0O-EFFF (hex) are unused on
the HEKTOR microcomputer board. However, the
external equipment will have to arrange for its own
address decoding.

The data transfer control signals (RD, WR, ALE,
HOLD, HLDA, READY, and I0/M) are all available,
and enable slow devices or DMA operations to be
used, as well as conventional synchronous data
transfers. Concerning interrupts and reset facilities,
these also exist, although only one of the four
special RST-type interrupts is available on the bus.

8.9 Connection to the serial line

The HEKTOR hardware is capable of sending and
receiving R§232C-standard signals. There is a utility
software package which will output 8-bit data ac-
cordingtotheserial transmission standard, with even
or odd parity, and atavariety of standard baud rates. It
uses the BUSY signal as a ‘clear-to-send’ input.

Unfortunately, an external power supply is required
before a serial line output device, such as a printer,
can be used. Very little power is needed, so a battery
is adequate for intermittent use, and a simple con-
nection arrangement is shown in Figure 8.10. Note
that if no ‘printer busy’ signal is available, then con-
necting the BUSY line to +5 V will enable con-
tinuous output of printer data. (This is adequate for
electromechanical teletypes, for example.)

SKT6
Busy H
2 = s 1oy et PRINTER
PRINTER
SERIAL |4 SERIAL
out LINE
+ 1oy B ON®/ OFF
SERIAL |6
IN
ov . REF

Figure 8.10 Printer connections

9 HEKTOR SYSTEM SOFTWARE

This section describes the HEKTOR system software
with the aim of enabling user programs to interact
with it successfully. Accordingly, the system data
structure and the utility routines are described func-
tionally. By using RAM-based vectors for interrupt
and I/O handlers, and key |/O parameters, the
design of the HEKTOR software has retained con-
siderable freedom for advanced users to modify or
extend the system software without having toreplace
the system ROMs. There is a summary of the more
useful routines and data locations in Appendix A.

9.1 System data structure

Table 9.1 gives an overall description of the com-
ponents of the system data structure. The system
RAM, in the 8155 device, is conceived of as con-
taining nine groups of variable data, each of which
are vectors, parameters or buffers. Vectors are used
both for interrupt service routine entry points and for
the calls to I/0 handler routines. These vectors are
initialized on switch-on or following a RESET, to
point to the ROM-based handlers for these func-
tions, but subsequent operations (either the use of
monitor commands or within a user program) can
alter these vectors so that user-designed software
can respond appropriately.

Table 9.1 RAM usage
Address Usage
2700 | T
5973 nterrupt vectors
%;;% /O vectors
%;%g Saved status buffer - Lryt?é%%%
%;gé Interrupt parameters
%;ﬂ 1/0 parameters J
%;gg Keyboard buffers
5
%;gf;-\ (Editor parameters)
22778% (Assembler parameters)
27FF | Stack
L Unused by
MONITOR
AZBSS(F)E (Text buffer)
ABUFE+1 (Symbol table and
OBPTR code buffer)
OBPTR+1
(Unused)
3FFF /

The saved status buffer is described in Section 4,
and is used to keep a copy of the microprocessor
registers’ contents following interrupts (BREAK
key, break-point, or single-step).

The interrupt parameters specify information
associated with the break-point and real-time func-
tions, whereas the 1/O parameters define such
things as the serial line output baud rate, the key-
board SHIFT LOCK state, and the TV output mode
(graphic or normal).

There are three levels of keyboard buffer. The lowest
holds the ASCII code for the last character keyed.
The next buffer holds the previous line keyed, ready
for processing by the monitor or editor command
decoders. The highest-level buffer contains the
decoded command line: command letter, three com-
mand argument values, and the line terminator code.

Next there are two workspace areas, which are used
by the editor and assembler respectively. Finally, the
rest of the system RAM is available as a stack. User
programs can use up to 170 (denary) bytes for a
stack, without interfering with the operation of the
monitor or the system utilities. (The monitor will,
however, report stack overflow if it is re-entered
with a stack which encroaches on the assembler’s
data structure; that is with SP less than 27BC
(hex).)

The user RAM area, addresses from 2800 (hex), is
used for the editor’s text buffer and for the assemb-
ler's symbol table and machine code buffer, but is
otherwise unused by the system software.

9.2 Interrupt structure

This is summarized in Table 9.2. There are five hard-
ware interrupt sources, and eight ‘software’ inter-
rupts. (One, the RESET interrupt, is initiated either
by hardware or software.) The hardware interrupt
sources are connected to particular pins on the
microprocessor, and signals on these pins cause the
appropriate response by the microprocessor. The
software interrupts are the one-byte RST instruc-
tions. When these instructions are executed, the
subsequent behaviour of the microprocessor is
similar to that of the hardware interrupts; hence their
name.

When an interrupt is received by the microprocessor,
its response is to call the routine whose address is
given in Table 9.2 as the ROM address. For all but
the RESET interrupt, the instruction at that address
is a jump to a location in the system RAM. That
location, in turn, contains another jump instruction.
The second and third bytes of this instruction,
therefore, define the address of the relevant interrupt
handler, and form the interrupt vector.

Being in RAM, the contents of the interrupt vector
(whose addresses are given in Table 9.2) can be

75

Table 9.2

Interrupt sources, vectors, and handlers

Source of Name ROM Vector Default Handler function
interrupt address address handler
address
RESET key RSTO 0000 — 0000 Initialize system
(program) RST1 0008 2701/2702 0000
(program) RST2 0010 270172702 0000
(program) RST3 0018 270172702 0000
(program) RST4 0020 2701/2702 0000
(program) RSTS 0028 2701/2702 0000
(program) RST6 0030 270172702 0000 .
break-point RST7 0038 270A/270B 0223 Saves status, removes break-point
exit to monitor
timer TRAP 0024 2710/2711 0242 Saves status, exit to monitor
BUSY RST5.5 002C 270472705 0000 Initialize system
BREAK key RST6.5 0034 2707/2708 020C Saves status, exit to monitor
(ext) RST7.5 003C 270D/270E 0000 Initialize system
altered. The handler addresses shown in Table 9.2 Bit:
are those which are set during system initialization,
following a RESET or power-on. For example, when 0 M5.5
the BREAK key is pressed, the microprocessor effec-
tively executes a CALL 0034 instruction. The three 1 M6.5 > Interrupt masks
locations in RAM whose first address is 2706 con-
tain a JMP 020C instruction. Finally, the handler) M7 5
proper, at 020C, performs the required actions. '
This chain of actions can be intercepted by the user. 3 IE Enable flag
If the BREAK interrupt vector is changed, namely the
contents of the locations with addresses 2707 and
2708, the BREAK interrupts will be vectored to the 4 9.5
new handler. Users may wish to develop their own
handiers for any of the TRAP, RST5.5, RST6.5 or 5 6.5 & tnterrupt flags
RST7.5 interrupts, and these can be linked into the
system software by setting their starting address in 6 s
the relevant interrupt vector. ')
Thef software interrupts can also be vectored .to user- 7 SID State of SID line
defined handlers. Each of the RST1-RST6 instruc-

tions is vectored via the address stored in
2701/2702, and RST7 is vectored via 270A/270B.

There are differences within the hardware interrupt
group, as regards their detailed effects on the
microprocessor, and any alternative handlers will
have to take these into account. The differences
centre around the interrupt register and the effect of
the El, DI, RIM and SIM instructions. The interrupt
register can be considered as reflecting the status of
the interrupt system as shown in Figure 9.1. When
the RIM instruction is executed, this status informa-
tion is transferred to the A register for subsequent
processing. The SID, | 5.5, | 6.5 bits simply reflect
the signal actually present on the indicated
microprocessor pin. The |1 7.5 bit is a true flag. That
is, the flag is set to 1 by a 0-1 transition on the
RST7.5 interrupt line, but is reset to 0 by a SIM
instruction (see below). The enable flag is set or

76

Figure 9.1 Interrupt status register

reset by the El and DI instructions respectively. The
three interrupt mask bits (M5b5.5, M6.5, M7.5) are set
or reset by SIM instructions.

The SIM instruction performs operations which
depend on the data in the A register when it is
executed. There are three independent operations,
as shown in Table 9.3 and all combinations of these
operations are possible, depending on the ‘enable’
bits 3, 4 and 6. Two of these three operations are of
interest here. Firstly, if the SIM instruction is
executed with bit 4 of the A register set to 1, then the
flag associated with the RST7.5 interrupt is reset to
0. (This operation is also performed automatically
when the microprocessor responds to an RST7.5
interrupt.)

Table 9.3 Effect of SIM instruction

A register contents: Function

7 6 5 4 3 2

O

X X X 1T X X X X reset | 7.6 flagto O
d 1T X X X X X X set SOD line to d
X X X X 1 dd d set mask bits to ddd

Table 9.4 Interrupt handlers

Procedure TRAP RST7.5 AST6.5, RST5.5
] Dl
Initialization: Set vector Set vector Set vector
(Init. timer) (Init. ext hardware) (Init. hardware)
SIM (A=1B) SIM (A=0D, or OF)
El El
Handler Save registers Save registers Save registers

Perform function
Restore registers
RIM
RET

Perform function
Restore registers
El

RET

Waitfor1 6.5 or1 5.5 to
return to O

Perform function
Restore registers
El

RET

Secondly, the three interrupts (RST5.5, RST6.5,
RST7.5) can be individually masked. That is, the
microprocessor will respond to an interrupt from one
of these sources if and only if:

® the signal has been received (flag bit=1),
and

® interrupts are enabled overall (enable flag=1),
and

¢ interrupt mask bit=0.

By selectively setting or resetting the mask bits,
while leaving the interrupt system enabled as a
whole, particular interrupts can be masked off. In
fact, the HEKTOR system software executes with
the M5.6 and M7.5 mask bits set to 1, but the M6.5
bitresetto 0, allowing BREAK key interrupts, but not
BUSY or external interrupts. Note that the TRAP
interrupt cannot be masked or disabled, so interrupts
from the onboard timer are always recognized. (The
timer is used primarily for single-step monitor opera-
tions.)

The RST5.5 and RST6.5 interrupts are /evel-
sensitive; that is, they supply an interrupt request
whenever the corresponding input pin is at the 1
level. (Whether this request is acknowledged by the
microprocessor depends on the mask and enable
bits in the interrupt register, and interrupts are
automatically disabled when an_interrupt is ack-
nowledged.) RST7.5 is edge-sensitive; that is the
interrupt request follows a 0-1 transition on the

input pin, and persists until the interrupt is acknow-
ledged, or the RST7.5 flag is reset by a SIM instruc-
tion. A TRAP interrupt request requires both con-
ditions to be satisfied; a 0-1 transition must have
occurred and the input level must remain at 1. These
differences are reflected in the suggested procedure
for handling interrupts given in Table 9.4. The SIM
instructions clear the relevant mask bits, and in the
case of RST7.5 also clear the interrupt flag. On
receipt of an RST5.5 or RSTH.6 interrupt, the hand-
ler should wait until the interrupt signal disappears,
to prevent immediate re-interrupting. Finally, before
returning from interrupt, the interrupt system should
be re-enabled. In the case of the TRAP interrupt, the
RIM instruction restores the interrupt enable flag to
its state prior to the TRAP interrupt; interrupts are
disabled whenever any interrupt is serviced.

Table 9.1 not only shows that there are the interrupt
vectors in the system RAM, but also that there are
interrupt parameters. Most of these parameters are
connected with timer interrupts (TRAPS), but two
parameters are associated with the break-point
handler.

The monitor's B command inserts a break-pointin a
user program by replacing the code at the specified
address by the RST7 instruction (FF (hex)). Both
the address of the location and its original contents
are saved as parameters of the break-point function;
the address is stored in the locations with addresses
2734/2735 and the contents in the location with

77

address 2736 (hex). When the break-point is en-
countered, the handler (which is entered via the
RST7 vector) can then restore the original code to
the break-point location. When no break-point is
specified, dummy values are used for the
parameters.

A final point on interrupts concerns the saved status
buffer (see Table 9.1). All of the interrupt handlers
in the HEKTOR system software (RESET, BREAK
key, single-step, and break-point) save the processor
status in the saved status buffer (see Table 9.5). Note
thatthefirsttwobytesare used forinstructions. Thisis
to enable subsequent G or 1 commands to continue
user programexecutionbyajumpto 2724 (hex), with
allregisters correctly restored.

Table 9.5 Saved status buffer

Address Contents
2724 El/DI
JMP
2726 Saved PC
2728 Saved SP
272A Saved AF
272C Saved BC
272E Saved DE
2730 Saved HL
2732 Saved |

9.3 1/0 structure

Table 9.1 shows that an area in system RAM is used
for 1/0 vectors. These vectors are used in exactly the
same way as the interrupt vectors. That is, when the
system software calls an 1/0 handler, it does so with
reference to a RAM-based address where a jump
instruction vectors the call to the ROM-based hand-
ler itself. For example to output a character to the TV
display, a CALL 2715 instruction is used. The loca-
tions 2715/2716/2717 contain the instruction JMP
0931, and the TV output routine is located at address
0931. In this way, a user could redirect all system
software output to an alternative handler simply by

Table 9.6 1/0 Vectors

changing the 1I/0 vector, namely the contents of the
locations with addresses 2716/2717. Table 9.6
shows the 1/0 vectors used, for the keyboard and
TV, and for the cassette handlers. Note that the H
command of the monitor is also vectored. This
provides a mechanism by which the user can
‘escape’ from the monitor to an arbitrary program
instead of the default BASIC interpreter.

9.4 TV handiers

The basic TV output handler (TV) is accessed by the
system software via the vector shown in Table 9.6.
This handler simply outputs a byte to the TV inter-
face hardware, and is described below. However,
there are a number of non-vectored utilities which
themselves call TV via the vector, and which perform
a variety of pre-processing operations which are
generally useful. For example, an 8-bit code can be
converted for display into two hex digits. These
routines are also described below, and are sum-
marized in Table 9.7.

9.41 TV output

The TV routine (address 0931) is used for all system
output to the TV interface. It uses the code in the A
register as a parameter, as summarized in Table 9.7.
Some of the ‘control’ codes (00-1F (hex)) perform
cursor movements, but if the code is in the range
20-7F (hex), a character is displayed (see Appendix
C) and the cursor moved right. If the code is in the
range 80-FF (hex), a graphic character is displayed.
These characters enable simple pictures to be drawn
on the screen, but they do not conform to any of the
many ‘standard’ sets of graphic characters used in
some microcomputer systems.

Asecond TV outputroutine, TVT, is similarto TV, but
instead of converting codes 00-1F into cursor
movements it simply outputs them as ‘characters’
from the graphics set.

Both routines wait, usually for ten milliseconds, to
allow the TV hardware to accept the output data,
and then return with the contents of all registers
intact.

Name Vector Default Handler function

address handler

address

CINV 2713/2714 077D KR: Awaits key depression; returns with ASCII in A register
CcouTtv 2716/2717 0931 TV: Outputs ASCIl in A register to TV display
TINV 2719/271A Ob6F CRL: Loads data from cassette
TOUTV 271C/271D 0488 CRS: Saves data on cassette
TVERV 271F/2720 0b6F CRL: Verifies data on cassette
HCMDV 272272723 0OOF6 Exit to BASIC interpreter

78

Table 9.7 Summary of display routines

Name Address Behaviour

TV 0931 Sends (A) to TV hardware.
OD=Carriage return, OA=line
feed, OC=clear/home,
08=cursor left, 09=cursor
right, OB=cursor up,
20-7F=ASCII char,
80—-FF=graphics.

As TV, but no conversion of
codes 00-1F

Displays 'ERROR’. Exit to
monitor at 0057

Displays carriage return, line
feed

Displays space

Displays colon, space
Displays codes in table
pointed to by (HL), until
zero encountered

Displays (A) as 2 hex digits
Disptays (HL) as space,

4 hex digits

VT 0928
PRERR 0324
PRNL 032A

PRSP 0347
PRCOL 0342
PRMES 0368

PRB 03BB
PRWD O3AF

PRB! 03B7 Displays byte pointed to by
(HL) as space, 2 hex digits
PRWI 03A5 Displays 16-bit code pointed

to by (HL) as space, 4 hex
digits

9.4.2 Special messages

This group of routines makes use of calls via the
COUTV vector at 2716/2717 and so normally out-
puts using the TV routine. PRERR (address 0324)
displays '/ERROR’ and then enters the monitor at
0057. That is, the system RAM initialization is
bypassed, and the monitor displays its prompt
character.

PRNL, PRSP and PRCOL perform the actions sum-
marized in Table 9.7. The contents of the
microprocessor registers are left intact, except that
PRCOL changes the contents of the AF registers.
PRMES displays the ‘message’ string of bytes poin-
ted to by HL, interpreting them as ASCII codes, until
the zero code is encountered. PRMES then returns,
with all register contents undisturbed, except AF,
HL.

9.4.3 Output with hex conversion

The last four routines in Table 9.7 perform conver-
sions on 8-bit or 16-bit codes, so as to display them
as strings of hexadecimal characters, rather than
interpreting them as ASCIl codes. Two of these
routines output 8-bit data, and two of them output
16-bit data. For example, if the A register contains
42 (hex), CALL TV will display 'B’, whereas CALL
PRB will display ‘42'.

These routines output via the COUTV vector in
2716/2717 and leave the registers’ contents intact,
except for the AF registers’ contents.

9.5 Keyboard handlers

There are three levels of keyboard handling. At the
lowest level, individual characters are accepted from
the keyboard, to give an ASCII code for the key,
possibly modified by the SHIFT or CTRL keys. At the
next level, there is a routine which accepts and
stores a whole line of characters. The highest-level
routines are used by the system software for accept-
ing and decoding a command line into its con-
stituent parts.

Those routines likely to be useful to users are sum-
marized in Table 9.8 and are described in more detail
below.

Table 9.8 Keyboard routines

Name Address Behaviour

KSTAT 078A Returns NZ if key pressed
(not SHIFT, CTRL)

KR 077D Awaits key. Stores code

(modified by SHIFT/CTRL)
and returns with code in A.
Sets flags if special key
Converts (A) to upper case
ASCII if lower case
Converts (A) to graphic code
if flag set

Enter with HL=buffer end
address. Accepts line into
buffer until terminator
character. Echoes input

KLUC 0850
KGRAF 0859

KBUF 0663

9.5.1 Accepting characters

The KSTAT routine (address 078A) returns im-
mediately with the Z flag set if no character key on
the keyboard is activated. If there is a key detected,
it is ‘debounced’ using a delay parameter in KDEL
(at 2743). Assuming a valid key depression is in
progress a return from KSTAT occurs after the key is
encoded. If SHIFT LOCK is detected, KSTAT returns
with Z set, but the system parameter KFLAG (at
2744) is altered so as to record the new SHIFT
LOCK status. For other keys, the ASCII code is com-
puted, taking into account the current state of the
CTRL and SHIFT keys and the SHIFT LOCK status.
KSTAT returns with this ASCIl code in the
accumulator (and stored in CHAR, at 2746) and
with the Z flag cleared. A side effect of KSTAT is to
set/clear bit 7 of KFLAG whenever CTRL-G/CTRL-
A is detected. In this way the CTRL-G and CTRL-A
key actions can be used to turn on or off the
‘graphics’ mode.

Note that the cursor keys return the following codes:

o 1 OB (hex), same as CTRL- K;
o | OA (hex), same as CTRL- J;
e RETURN OD (hex), same as CTRL- M;
o - 09 (hex), same as CTRL-I;

79

®

¢ HOME

08 (hex), same as CTRL-H;
0C (hex), same as CTRL-L.

The KR routine awaits the ‘no key' condition, if
necessary, before accepting and encoding the next
key depression. Any SHIFT LOCK is internally
processed, within KR, and a return from KR only
occurs when some key other than SHIFT LOCK,
SHIFT or CTRL is depressed. KR operates entirely by
KSTAT calls.

The KLUC routine converts the ASCI| code in the A
register to an upper-case alphabetic ASCII code, if
it was a lower-case code. This routine is used by the
system software, for all keyboard input. The KGRAF
routine converts the ASCII code in the A register to
the corresponding graphic code (bit 7 =1), if the
graphic mode flag (that is, bit 7 of KFLAG) indicates
‘graphics on’.

9.56.2 Accepting a line

The only routine used by the system software for
accepting a line of characters from the keyboard is
KBUF (see Table 9.8). This routine calls KR via the
CINV vector repeatedly, and ‘echoes’ the typed-in
characters using the TV routine (again vectored via
COUTV). The input ASCIH codes are stored in the
line buffer which starts at address 274D. The routine
is parameterized, with the address of the end of the
line bufferin HL. For example, if KBUF is called with
HL containing 276D (hex) the line buffer is defined
as comprising 20 (hex) locations. KBUF is a com-
plex routine, since it not only accepts characters, but
also handles the display and the line buffer.

KBUF accepts characters, using the KR routine, and
converts lower-case to upper-case using KLUC. If
the character is a non-control character (that is, an
ASCIl code in the range 20-7F (hex)), then it is
echoed on the screen and inserted in the line buffer.
(If the end of the line buffer has been reached, the

character is neither inserted nor echoed.) The next
character is then awaited.

The left and right cursor keys cause the appropriate
cursor movement on the display, but this is ac-
companied by the display, and storage in the line
buffer, of a space character. Thus, keying right cur-
sor is identical to keying a space, and the left cursor
is effectively a ‘rub-out” key. Again, these cursor
movements are ignored if their implementation
would cause operations outside the limits of the line
buffer.

KBUF accepts no more characters when one of four
terminators is keyed. A number is then stored in the
TERM variable (address 2745) which specifies the
terminator thus:

° 1 —store FF in TERM
e RETURN —store 00 in TERM
] l —store 01 in TERM
e CTRL-P —store 02 in TERM

The terminator is neither echoed nor stored in the
line buffer. Instead, any unused locations in the line
buffer are filled with zeros, and KBUF returns.

Apart from the cursor movement and terminator
keys, KBUF ignores all keys with ASCI| codes in the
range 00-1F (hex).

9.6 Cassette handlers

Data is recorded on cassettes using the format
shown in Figure 9.2. Individual bits occupy a fixed
length of tape, defined by a reversal of magnetiza-
tion at each end. As shown in Figure 9.2(a), there
may be an additional magnetization reversal in the
middle of the bit position. If there is this additional
reversal, the bit value is 1; if not, the bit value is 0.
Bits are recorded at a rate of about 1300 per second
(determined by the software driver).

Magnetization reversals

- A J
vV ~
Bit-value of O Bit value of 1
(a)
5F Start End Entry Check
0 Data bytes
S (hex) | address | address point Y sum
N J
Y
Preamble
(b)

Figure 9.2 Cassette reading format

80

Looking at a recorded block of data as a whole, it
consists of the sections shown in Figure 9.2(b). The
first section comprises a ten-second ‘preamble’,
which enables the cassette-reading routine to syn-
chronize to the recorded signals (after the few
seconds of blank leader on most cassettes) in
preparation for acceptance of the recorded data. The
preamble comprises a long sequence of Os foliowed
by a standard identification character (5F hex).

The subsequent data is recorded as continuous 8-bit
quantities. The first six bytes define the addressing
information associated with the subsequent data
bytes. There are therefore three 16-bit addresses
defining respectively:

e The starting address in memory of the
subsequent data;

e The last address of the subsequent data;

e The entry address for the data (for the case
where it is an assembler-generated program of
machine instructions.)

There then follows the data itself. The number of
bytes will be end address — start address + 1. Finally,
there is a checksum byte. This is an error-detection
code, whose value is such that if all the bytes on the
tape are added together (including the six bytes of
addressing information), the least significant 8 bits
of the sum must be the same as the checksum. When
reading the tape, the system software does this
arithmetic and comparison, and thereby is able to
verify that the reading was accurate. (Peculiar com-
binations of errors in recording or reading the tape
could give an apparently valid checksum, but the
likelihood is very low.)

The main cassette-handling routines are CRS and
CRL, and are described in more detail below.

9.6.1 Saving data

The system software uses the CRS routine (called
via the TOUTV vector; see Table 9.6) to record a
block of data according to the format of Figure 9.2.
This routine makes use of several parameters, some
of which are in the system RAM, and some passed
to the routine in the registers, as shown in Table 9.9.

Table 9.9 Parameters for CRS

Name Address Comment

ARG1 2747/2748 Start address recorded on
tape

End address recorded on
tape

Entry point recorded on
tape

Start address for recorded
data block

End address for recorded
data block

ARG2 2749/274A
UPC 2726/2727

HL reg

DE reg

The three addresses recorded on the tape at the start
of the record are the values of the ARG1, ARG2 and
UPC system variables. The data bytes recorded are
taken from the memory locations whose address
range is specified by the HL and DE registers. (Al-
though the addresses in HL and ARG1 are usually
the same, as are those in DE and ARG2, this system
enables data to be recorded from one area of mem-
ory for subsequent loading back into a different
area.)

CRS starts by displaying the 'SET RECORD’
message, and awaiting a key depression to indicate
that the recorder controls have been set for record-
ing. It then calls the CRON routine (at address
0529) to turn on the recorder’'s motor. It then waits
for about ten seconds while recording the preamble
of Os. The address, data, and checksum bytes are
then recorded, the motor is turned off (calling
CROFF at 0532) and CRS returns. Note that CRS
uses the timer in the 8155 device for bit-timing, via
TRAP interrupts.

9.6.2 Loading data

The system. software uses the CRL routine (called
via the TINV vector, see Table 9.6) to load a block of
data recorded according to the format of Figure 9.2.
This routine is called with the carry flag as a
parameter. If the carry is 1, the Joading of the data is
performed, as described below. If the carry is O,
verification of the tape is performed. Verification is
identical to loading, except that the data read from
tape is not actually loaded into memory. A second
parameter is the contents of the BC register pair. This
is used as a loading offset. That is, the start and end
addresses read from tape are each augmented by the
contents of BC to delimit the area of memory into
which data is actually loaded from tape. Normally,
this offset will be zero, but it does offer some flex-
ibility in loading, via buffers for example.

CRL starts similarly to CRS. That is, a dialogue in-
volving the message ‘SET TO PLAY’ ends with the
recorder’s motor being turned on. The incoming sig-
nal from the cassette interface is then sampled at a
rate of once every 125 microseconds (using the
8155 timer attached to the TRAP interrupt). For the
initial Os in the preamble section, each
magnetization-reversal detected corresponds to the
start of a bit, and its value is deduced as O because
the next reversal occurs after a ‘long” time. CRL
requires that a continuous record of at least twelve
Os followed by the identification character (bF) be
detected after which it assumes that the preamble
has passed.

The subsequent bits are assembled into bytes, the
first six bytes being used as address information, and
subsequent bytes as data. The checksum, as com-
puted from the bytes read from tape, is compared
with the checksum read from tape, and CRL returns.

If the preamble-seeking operation fails, CRL will

81

continue to seek it, and the operation will have to be
manually aborted (using the BREAK or RESET keys,
for example). Otherwise CRL will return with
various parameters. The DE register pair will contain
the actual memory address into which the last data
byte was loaded (or would have been loaded, if CRL
is being used for verification). The Z flag indicates
whether there was a checksum error (Z =1 means
‘correct’) and the UPC variable (address 2726/
2727) contains the entry address read from tape.
Note that CRL does not turn the recorder motor off.

9.7 Serial line handlers

The standard serial line format is shown in Figure 9.3
as it appears on the SERIAL OUT line of the inter-
face. Each character is specified by its 7-bit ASCII
code, and embedded in an 11-bit format which in-
cludes a start bit, a parity bit, and two stop bits.
When the line is idle, it is maintained at the lower
voltage, and the start bit (always the high voltage)
synchronizes the receiving equipment for the recep-
tion of the subsequent seven data bits. These data
bits are signalled by the line being at a high or low
voltage for the same period T. The data bits are trans-
mitted starting with the least significant bit, and with
a bit value of 0 corresponding to the higher voltage.

Start Data Parity Stop
VOJIS bit bits bit bits
e
+ vy LSB MSB () (-)
___E}_ — —Time
8%
—_T—

Figure 8.3 Serial line format

Following the seven data bits, the parity bit is trans-
mitted. The value of this bit reflects the number of
data bits which are 1, and acts as an error-detection
facility. Following the parity bit, two stop bits (low
voltage) are transmitted, leaving the line in the idle
state ready for the next character.

Serial line data transmission and reception involve
four system routines:

® SSET (at address 03D3)
e SOUT (at address 0883)
® SIN (at address O8EA)

o SSTOP (at address 0258)

Of these, SSET and SSTOP start and stop (respec-
tively) the timer-interrupt system in a manner suit-
able for timing the serial line bits. Therefore, SSET
should be called before performing any input or out-
put via the serial line. Calling SSTOP afterwards is
not essential, unless cassette |/0 is required, but the
timer interrupts do consume about half the available
processor time.

82

SOUT is the routine for sending a 7-bit ASCIl code
via the serial line. It assumes that SSET has been
called previously, and outputs the character in the
format shown in Figure 9.3. The parity bit is com-
puted according to the RAM-based 1/0 parameter
SOPAR (at address 2741). Meaningful values for
SOPAR are given in Table 9.10, and the value
matching the requirements of the receiving equip-
ment attached to SERIAL OUT should be set up
before calling SOUT. (The default value is EO for odd

parity.)

Table 9.10 Baud rate/parity parameters

Baud rate S?EGAXL)J D Parity S((?)F;f\)R
1200 07 odd EO
(default) (default)
600 oD even Co
300 1B mark 80
110 49 space 00

The second parameter defines the effective baud
rate for the serial line; that is, the rate of transmission
of bits, or 1/T bits per second in terms of Figure 9.3.
Table 9.10 shows the 8-bit value required in
SOBAUD (address 2742) for various standard baud
rates.

SOUT is called with the 7-bit ASCII code in the A
register (all register contents are undisturbed on
return). The parity bit value is computed, using the
SOPAR parameter. The routine then waits until the
BUSY line is at high voltage level by continually
examining the | 5.5 flag (see Subsection 9.2). It then
outputs the 11-bit pattern described by Figure 9.3,
and returns.

SIN is the routine for accepting an ASCII code from
the SERIAL IN line, assuming SSET has been called
previously. SIN awaits a negative-going transition
on the SERIAL IN line, and assumes that this
represents the beginning of a START bit (see Figure
9.3). Using the current SOBAUD value, it then sam-
ples the line at appropriate intervals to construct an
8-bit code (7 data bits plus parity, in the MSB
position), and returns with this code in the A regis-
ter, and with other registers undisturbed. Since it
does not wait to detect the stop bits, there is time to
process this character and call SIN again for an
immediately-following character, if any.

9.8 Processing utilities

There are three groups of system utilities, other than
the 1/0 routines, that may prove useful. One group
offers a range of software-timed delays, another

facilitates the use of BCD arithmetic. The third group
performs binary multiplication and division. These
are summarized in Table 9.11. The delay routines are
carefully constructed loops. The timing of DELAY1
is accurate to two microseconds, and includes the
execution time for the CALL DELAY1 instruction.

Table 9.11 Processing utilities
Name Entry Behaviour
address

DELAY1 09A3 Enter with value in HL (> 1).
Returns after HL/128 milli-
second with A, HL setto O

DELAYZ 09AB Enter with value in A.
Returns after A seconds with
Asetto 0

BCDADD OFA3 (HL)=(HL)+(DE) as 4-digit
BCD. (HL)=9999 and carry
if overflow

BCDSUB OF9%0 (HL)=(HL)—-(DE) as 4-digit
BCD. (HL)=0000 and no
carry if overflow

DMUL 1A97 (HL)Y=(A)x(B)
2'scomplementmultiplication

DSUB 1AB2 (A)=(HL)/(B)

2's complement division

The BCD routines assume that valid four-digit un-
signed BCD integers are stored in the HL and DE
registers. The value returned in HL is the correct
BCD result unless overflow has occurred, in which
case the limiting values are set in HL. (The carry flag
indicates whether overflow has occurred.)

The routines DMUL and DSUB perform multiplica-
tion and division on binary-coded unsigned
integers. If the A and B registers contain 8-bit
integers (0-255), then DMUL returns their 16-bit
product (0-65535). Similarly, if HL contains a
16-bit unsigned integer, and B contains an 8-bit
integer (0-127), then DDIV returns the 8-bit
quotient in the A register. If the correct quotient
exceeds the available range (0-255), then its least
significant 8 bits are returned. The special case of
dividing by zero returns 255 (decimal). Note that
non-integer quotients are rounded down to the
nearest integer. For example, 70/71 returns zero.

9.9 Tune machine

There is a demonstration program which will play
‘tunes’ via the TV loudspeaker, by interpreting codes
representing musical notes and sequencing in-
formation.

There are two entry points for the ‘tune machine’
program. Execution from 1B38 (hex) plays a stan-
dard tune and returns to the monitor. Execution from
1B43 (hex) plays a user-defined tune, whose list of
‘musical instructions’ is stored in the user RAM,
starting at address 2810 (hex). The ‘instruction set’
is summarized in Tables 9.12 and 9.13.

Table 9.12 Note instructions for tune
machine

Note codes Note
Short Long

75 F5 F (lowest)
6E EE G

68 E8 G#

62 E2 A

5C DC A#

56 D6 B

52 D2 middle C
4D CD C#

48 C8 D

44 C4 D #

40 CO E

3C BC F

39 B9 F#

35 Bb G

32 B2 G#

2F AF A

2C AC A#

29 A9 B

26 AB C

24 Ad C#

22 A2 D

20 AQ D#

1E 9E E

1C 9C F (highest)
00 80 pause

Table 9.13 Control instructions for tune machine

Control Effect Initial Examples:

codes value

FB XX Set duration of short notes to XX 28 10 is fast, 40 is slow

FC XX Length factor for long notes 02 04 means long notes fourtimes as long as short
FE XX ‘Instrument’ type FF FF is ‘piano’, 00 is ‘clarinet’

FF XX YY Jumptotuneataddress YYXX (hex) —

FA Stop and exit to monitor —

F9 XX YY Call ‘subroutine’ at YYXX —

F8 Return from ‘subroutine’ —

83

The ‘note’ codes shown act as parameters of the
timing loop which determines the frequency of the
note played. The codes given are approximations to
the diatonic musical scale over two octaves, but
intermediate values can be used. Bit 7 of the note
code indicates whether the note lasts for a ‘short’ or
a 'long’ time. The short notes last for a period of time
specified by a parameter that can be changed by
using the FB XX control code (that is, FB (hex) is
interpreted as meaning ‘change duration’, and the
next byte in the music program is an operand defin-
ing the new duration). The initial tone duration for
short notes (parameter value = 28 (hex)) is about
200 milliseconds.

The duration for the ‘long-note’ codes is given by
another parameter, which is a multiplying factor
with respect to the prevailing ‘short-note’ duration.

The parameter is initally 2, but can be changed by a
two-byte control instruction, whose coding is of the
form FC XX. The third musical parameter is the ‘in-
strument’ type, changed by the FE FF or FE 00
control instructions. The ‘clarinet’ mode produces a
continuous tone for the duration of the note, but the
‘piano’ mode produces a harmonically rich per-
cussive sound.

The remaining control instructions are for sequenc-
ing, in an analogous manner to the sequence control
instructions in a conventional program. The three-
byte ‘jump’ instruction (FF XX YY) causes the tune
machine program to start interpreting the music

84

program beginning at the memory address YYXX
(hex). The ‘call’ and ‘return’ instructions enable the
‘music programmer’ to include standard or repeated
musical phrases (or ‘subroutines’).

9.10 SORT routine

This is an application subroutine which sorts the
contents of a specified set of memory locations into
ascending order. The entry point for this routine is
1FD5 (hex).

The data to be sorted should be stored in
consecutive locations in RAM. The sorted data will
be left in the same set of memory locations. On entry
to the subroutine, the number of data items to be
sorted should be held in the accumulator and the
memory address of the first data item should be held
in the HL register pair.

The data is treated as a set of (binary) unsigned
integers in the range O0—FF. If the data used is inter-
preted as ASCI codes for alphabetical characters of
a single case only (either upper-case or lower-case)
the result will be that the characters are sorted into
alphabetic order.

The routine works by successively comparing
adjacent data bytes. If the data bytes in a given pair
are not in ascending order it swaps them. The
routine checks every adjacent pair in this way until
no swaps are needed on a complete pass through
the data.

et
w@%@%

- -

gx
..
.
SEEEE

.

.
.

S o
.
-
.

-
s
.
S . -
oo

. ..
. o
.

aaai

.

.

mfmv

APPENDIX A: HEKTOR MEMORY MAPS

The 8085 microprocessor in HEKTOR uses 16-bit
addresses. That is, up to 2'¢ = 65536 different mem-
ory locations can be individually addressed, when
storing a byte of data in memory or retrieving a byte
from memory. However, not all of these 65536
potential memory locations actually exist as physical
storage locations in HEKTOR, and some of the
addresses refer to 1/0 devices rather than memory
locations. As an additional complication, some
storage locations and 1/0 devices will respond to
any of several addresses, although only one address
is used by the system software. However, the con-
verse is not true; for each address, there is at most
one physical device that will respond.

Table A.1 is a memory map for HEKTOR, showing
what physical device, if any, corresponds to each
16-bit address. The figure also shows the main
usage of that device, and, for multiple addresses, the
address actually used by the HEKTOR system soft-
ware. Note that addresses are specified as
hexadecimally coded numbers (see Appendix B).

Tables A.2 and A.3 are memory maps summarizing
the key addresses used by the system software.
Table A.2 gives entry points for ROM-based system
routines, and Table A.3 the usage of the on-board
RAM memory. More details are given in Section 9.

Table A1 HEKTOR memory map
Hexadecimal Corresponding Principal usage Address range
adadress physical device by system software used by software
0000-1FFF 2 x 4K ROM devices Storage of system programs/ 0000-1FFF
routines
2000-23FF TV output data port TV interface 2000 only
2400-27FF ZK BAM in 8155 device Workspace/stack for system 2700-27FF
programs
2800~3FFF 3 x 2K RAM devices User read/write memory 2800-3FFF
4000-6FFF None None None
7000-7FFF Same devices as for addresses FOOO-FFFF FOOO-FFFF
8000-9FFF Same devices as for addresses 0000-1FFF 0000-1FFF
AOOO-A3FF Same devices as for addresses 2000 to 23FF 2000 only
A400-A7FF I/0O ports of 8155 device Keyboard, TV, cassette control A400-A405
ABOO-BFFF Same devices as for addresses 2800 to 3FFF 2800-3FFF
COOO-EFFF None None None
FOOO-FFFF 1 x 4K ROM device Storage of BASIC interpreter FOOO-FFFF

86

Table A.2 ROM entry points

Table A.3 System RAM usage

Address Name

Comment

Address Name

Comment

0000
0057
O0OF6
0258
0324
032A
0342
0347
0368
03Ab5

03AF
03B7
03BB

03D3
0488
0529
0632
056F
0663
0770
078A
0850
0859
0883
O8EA
092B
0931

09A3
09AB
OBbE
0B65
OF90
OFA3
101C
1A97
1AB2
1B38
1B43
1FD5

1FFF

MONC
MONW
HCMD
SSTOP
PRERR
PRNL
PRCOL
PRSP
PRMES
PRWI

PRWD
PRBI
PRB

SSET
CRS
CRON
CROFF
CRL
KBUF
KR
KSTAT
KLUC
KGRAF
SOuUT
SIN
TVvT
TV

DELAY1
DELAY2
EDITC
EDITW
BCDSUB
BCDADD
ASSEM
DMUL
DDIV
T™S
™U
SORT

Monitor ‘cold” entry

Monitor ‘warm’ entry

BASIC entry

Serial 1/0 disable

Displays error message

New line on display

Displays colon

Displays space

Displays string of characters
Displays 4 hex digits,
HL=pointer

Displays 4 hex digits, contents
of HL

Displays 2 hex digits,
HL=pointer

Displays 2 hex digits, contents
of A

Serial 1/0 enable

Saves data on cassette

Starts cassette motor

Stops cassette motor
Loads/verifies data on cassette
Accepts line from keyboard
Accepts key from keyboard
Tests if key pressed

Converts lower to upper case
Converts to graphic code
Serial line output

Serial line input

TV output, no conversion

TV output, control code
conversion

Short delay

Long delay

Editor entry (cold)

Editor entry (warm)

BCD subtraction

BCD addition

Assembler entry

Binary multiplication
Binary division

Tune machine (standard tune)
Tune machine (user tune)

Alphabetical sort, HL=pointer,
A=no. of characters

End of system ROM

2701 RST1V Vector for RST1-6 software
interrupts

2704 RSTH5V Vector for BUSY interrupts

2707 RST66V Vector for BREAK interrupts

270A RST7V Vector for break-point
interrupts ‘

270D RST75V Vector for RST7.5 interrupts

2710 TRAPV Vector for timer interrupts

2713 CINV Vector for command input
(keyboard)

2716 COUTV \(/{_e\%or for command output

2719 TINV Vector for load input (cassette)

271C TOUTV Vector for save output
(cassette)

271F TVERV Vector for verify input
(cassette)

2722 HCMDV Vector for H command exit
2724 — (workspace for saved status
buffer)

2726 UpPC Saved PC

2728 USP Saved SP

272A UAF Saved AF

272C UBC Saved BC

272E UDE Saved DE

2730 UHL Saved HL

2732 Ul Saved |

2734 — (interrupt parameters)

2741 SOPAR Serial line output parity

2742 SOBAUD Serial line output baud rate

2743 KDEL Key debounce parameter

2749 KFLAG Lock/graphic flags

2745 TERM Type of terminator keyed

2746 CHAR Last character keyed

2747 ARG1 Start address for cassette

2749 ARG2 End address for cassette

2748 — (Monitor workspace)

274D BUFFS Line buffer for KBUF

278A — (Editor workspace)

2792 — (Assembler workspace)

27FF — End of stack

2800 — (Editor text buffer)
(Assembler symbol table)
(Assembler code buffer)

3FFF — End of on-board RAM

87

APPENDIX B: HEXADECIMAL CONVERSION TABLES

In the hexadecimal system, two-digit codes, ranging
from 00 to FF, are equivalent to 8-bit binary codes,
and four-digit codes (0000 to FFFF) are equivalent
to 16-bit binary codes. These codes are clearly com-
pact, and since each hexadecimal digit exactly cor-
responds to a group of four bits in the equivalent
binary code, translation to and from binary codes is
straightforward.

Conversion between denary (decimal) and hexa-
decimal codes is less straightforward, so conversion
tables are useful. Table B.1 gives the denary equiv-
alent for all two-digit codes of the form YZ, where Y

and Z are each hexadecimal digits. Thus, the denary
equivalent of A2 (hex) is found in the A" row and
the 2™ column of Table B.1, and is 162.

Table B.2 gives the denary equivalent for four-digit
hexadecimal codes of the form WX00, where the
least significant pair of digits are both zero. For
example, BEOO (hex) has the denary equivalent
48640. The tables can be combined, to convert
between denary and any four-digit hexadecimal
codes. For example, ABCD (hex)=AB00+ CD
(hex) =43776 + 205 = 43981 (denary).

Table B.1 Denary values for YZ (hex)
Yy |z=0 1 2 3 4 5 6 7 8 9 A B o D E F
o o) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
2 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
3 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
4 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
5 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
6 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
7 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
8 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
9 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
A 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
B 176 177 178 179 180 181 182 183 184 185 186 187 183 189 190 191
c 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
D 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
E 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
F 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
Table B.2 Denary values for WX00 (hex)
WiX= 0 1 2 3 4 5 6 7 8 9 A B c D E F
o 0 256 512 768 1024 1280 1536 1792 2048 2304 2560 2816 3072 3328 3584 3840
1 4096 4352 4608 4864 5120 5376 5632 5888 6144 6400 6656 6912 7168 7424 7680 7936
2 8192 8448 8704 8960 9216 9472 9728 9984 10240 10496 10752 11008 11264 11520 11776 12032
3 12288 12544 12800 13056 13312 13568 13824 14080 14336 14592 14848 15104 15360 15616 15872 16128
4 16384 16640 16896 17152 17408 17664 17920 18176 18432 18688 18944 19200 19456 19712 19968 20224
5 20480 20736 20992 21248 21504 21760 22016 22272 22528 22784 23040 23296 23552 23808 24064 24320
6 24576 24832 25088 25344 25600 25856 26112 26368 26624 26880 27136 27392 27648 27904 28160 28416
7 28672 28928 29184 29440 29696 29952 30208 30464 30720 30978 31232 31488 31744 32000 32256 32512
8 32768 33024 33280 33536 33792 3404R 34304 34560 34816 35072 35328 35584 35840 36096 36352 36608
9 36864 37120 37376 37632 37888 38144 32300 38656 38912 39168 39424 39680 39936 40192 40448 40704
A 40960 41216 41472 41728 41984 42240 42496 42752 43008 43264 43520 43776 44032 44288 44544 44R00
B 45056 45312 45568 45824 46080 46336 46592 46848 47104 47360 47616 47872 48128 48384 48640 48896
c 49152 49408 49664 49920 50176 50432 50688 50944 51200 51456 51712 51968 52224 52480 52736 52992
D 53248 53504 53760 54016 54272 54528 54784 55040 55296 55552 55808 56064 56320 56576 56832 57088
E 57344 57600 57856 58112 58368 58624 58880 59136 59392 59648 59904 60160 60416 60672 60928 61184
F 61440 61696 61952 62208 62464 62720 62976 63232 63488 63744 64000 64256 64512 64768 65024 65280

88

APPENDIX C: 8-BIT ASCII CODES

Table C.1 shows the standard coding scheme used
for the representation of character information in
most 8-bit microcomputers, including the system
software of HEKTOR. The standard ASCll code
(American Standard Code for Information Inter-
change) is used, but as this defines character coding

only in terms of seven bits (to allow 128 different
characters and data-communication codes), the
eighth bit, the most significant, is usually set to zero,
for storage and communication using the 8-bit-
orientated 8-bit microcomputers.

Table C.1 8-bit ASCIl codes for character data (hex)
Character* ASCl/ Character ASClI Character ASCI/ Character ASClI
hex decimal hex decimal hex decimal hex decimal

NUL 00 00 SPACE 20 32 @ 40 64 . 60 96
SOH 01 01 ! 21 33 A 41 656 a 61 97
STX 02 02 " 22 34 B 4?2 66 b 62 98
ETX 03 03 # 23 356 C 43 67 c 63 99
EOT 04 04 $ 24 36 D 44 68 d 64 100
ENQ 05 05 % 25 37 E 45 69 e 65 101
ACK 06 06 & 26 38 F 46 70 f 66 102
BEL 07 07 ’ 27 39 G 47 71 g 67 103
BS(«) 08 08 (28 40 H 48 72 h 68 104
HT(-) 09 09) 29 41 f 49 73 i 69 105
LF(]) 0A 10 * 2A 42 J aA 74 j B6A 106
VT(1) 0B 11 + 2B 43 K 4B 75 k 6B 107
FF (home) 0C 12 , 2C 44 L 4C 76 I 6C 108
CR (return) 0D 13 - 2D 45 M 4D 77 m 6D 109
SO OE 14 . 2E 46 N 4E 78 n 6E 110
S| OF 16 / 2F 47 0 4F 79 0 o6F 111
DLE 10 16 0 30 48 P 50 80 p 70 112
X-ON 11 17 1 31 49 Q 51 81 q 71 113
TARE 12 18 2 32 50 R 52 82 r 72 114
X-OFF 13 19 3 33 51 S 53 83 s 73 115
TAPE 14 20 4 34 52 T 54 84 t 74 116
NAK 15 21 5 35 53 U 55 85 u 75 117
SYN 16 22 6 36 b4 \ 56 86 v 76 118
ETB 17 23 7 37 55 W 57 87 W 77 119
CAN 18 24 8 38 56 X 58 88 X 78 120
EM 19 25 9 39 57 Y 59 89 % 79 121
sSuB 1A 26 : 3A 58 Z bA 90 z 7A 122
ESC 1B 27 ; 3B 59 [5B 91 { 7B 123
FS 1C 28 < 3C 60 \ 5C 92 ! 7C 124
GS 1D 29 = 3D 61] 5D 93 } 7D 125
RS 1E 30 > 3E 62 ~ 5E 94 ~ 7E 126
uUs 1F 31 ? 3F 63 _ bF 95 DEL 7F 127

* Note on control characters: The characters in this column are control characters. Most of them do not
have designated keys on the keyboard. To obtain them you press and hold the key, and while it is
held, press some other key. The key to use is the one listed in the third column of the table, at a position
corresponding to the desired control character. Thus pressing and @ gives the control character

ENQ (ASCII code 05, hex).
Example:

[CTRL}-[M] (control M) is the same as RETURN.

89

APPENDIX D: HEKTOR’'s GRAPHICS CHARACTERS

Table D.1 shows the set of graphics characters avail -
able in HEKTOR.

The characters can be obtained in assembly lan-
guage by means of their ASCI codes, given in the
table in denary.

Inthe BASIC interpreter, the graphics characters can
also be obtained by use of their ASCIi codes. Single
characters can be obtained most conveniently by
use of the string function CHR$ (Subsection 7.3.5).

Alternatively, characters can be obtained by keying

- (see Appendix C for note on control
characters) and then keying the corresponding key-
board key, as shown in Table D.1. This mode is most

convenient for
characters.

After keying |CTRL -, only characters correspond-
ing to the upper-case keyboard symbols and letters

will be produced. To obtain the characters corres-
ponding to the lower-case keyboard symbols and
letters, - must be keyed before and after the
keystroke (or series of keystrokes).

producing strings of graphics

In the [CTRL - graphics mode, the cursor control

keys, [=][<][T][1]and[HOME] and the[RETURN]key,

all produce graphics characters. To revert to the
normal keyboard characters and functions, |[CTRL -
must be keyed again.

Table D.1 HEKTOR graphics characters
128 144 160 176 192 T 208 224 240
(@) (@) (P) (p) *
129 = l145 | [1861 177 I [193 209 205 241 ,
() (1) (A) \ Q) (a) Al ‘
130 146 |12 178 _ 194 210 226 242
I) I (2) (8) “— I 1 (b) 2 '
131 I 147 |83 |—' 179 Jd |98 / 211 ! 227 243 ’
(#) (3) (C) (S) {c) ,3 (s)
132 148 _ |164 I 180 1196 l 212 ‘ 228 4 244
($) (4) (D) (M) (d)
133 (149 L |165 —I 181 L 197 \ 213 ‘ 229 5 | 245
(%) (5) (E) () (e)
134 150 166 182 198 214 230 246
I (&) | I ® @ v * () 6
135 I_ 151 L {167 I'_I 183 _| [199 /' 215 * 231 7 | 247
() {7) (G) (W) {g)
136 152 168 184 200 216 . 232 8 248
() _ | — | (8) RG] X) (h)
137 153 169 = l185 201 217 . 233 249
(—) _ | — | (1) (v) (i) 9
138 154 170 186 202 218 234 250
() | 1 e L_ 2 1 |w (2) B () 10
139 — [155 171 187 + 203 . 219 ﬂ 235 251
(1 | _l (+) E (3) (K) / (N (k) 'J
140 156 172 188 204 220 236 252
(HOME) _J IR _I (< e) a 0 Q
141 157 173 189 205 221 237 253
(RET) :] }_ (-) j (=) - | 0 ﬂ (m) K
142 158 174 190 206 222 238 254
_, T v _J >) T | () H n)
143 j 159 _|_ 175 j 191 L 207 223 B 239 255
(/) s (O) (=) (o)

90

APPENDIX E: HEKTOR BASIC ERROR MESSAGES

Error code Error message Error code Error message
0101 Line number too large 1690 Overflow when multiplying factors
0174 Not enough space to insert program 1719 Dividing by zero
line 1731 Overflow in multiply or divide
0206 lllegal characters in or after statement 1746 String variable not allowed here
0312 Array subscript too large 1757 Number too large
0320 Zero array subscript 1770 Parenthesis expected
0364 No such array 1828 Negative parameter to RND
0383 Array subscript too large 1831 Zero parameter to RND
0445 Out of RAM 19156 Overflow
0480 Number too large 1937 Parenthesis expected
0488 Number too large 1974 String too long
0617 GOTO non-existent line 2024 No RAM left for string operation
0624 Line number too large requested
0639 No comma in DELETE statement 2027 Inappropriate use of string variable
0648 No delimiting number 2046 Equals sign expected
0651 Line number too large 2113 Invalid characters on end of line
0695 Line number too large 2290 Line number too large
0773 Parameter to TAB negative or 2329 Line number too large or negative
exceeds 256 2386 String too long for buffer
0779 lilegal zero parameter to TAB 2410 String too long for buffer
function 2430 Equals sign expected
0784 Parameter to TAB exceeds 63 2673 String expression too complex
0789 Use of TAB function to other than 2675 FOR or GOSUB statements nested
TV screen too deep
0948 GOSUB to non-existent line 2710 Null string illegal as file name
0989 Invalid symbol in DIM statement 2751 VERIFY found bad program
0994 Invalid symbol in DIM statement 2758 No file name on LOAD
1007 Argument to DIM greater than 127 2777 Program read is faulty or too big
1012 Zero argument to DIM statement 2792 File number negative or over 255
1015 Argument to DIM greater than 127 2800 File unit over 9
1041 No RAM left to declare another array 2816 Cassette syntax error in OPEN,
1055 Attempt to redimension array CLOSE, INPUT or PRINT
1081 Return without matching GOSUB 2823 No file number in OPEN or CLOSE
1101 Variable name expected after FOR statement
1191 TO after FOR missing or misspelt 2825 Trying to open or close unit 0 —
1194 String variable not allowed in NEXT always open
statement 2832 Attempt to open a file already open
1197 Variable name expected in NEXT 2885 Null string given for file name in
statement OPEN
1210 Improper nesting of FOR and 2987 Syntax error in OPEN statement
GOSUB 3093 Parameter to string function negative
1327 THEN expected or over 255
1350 Read from filte OPEN for OUTPUT 3097 Zero numeric parameter to string
1365 Unable to read this tape function
1373 Read a file name instead of data 31156 Beyond end of string
1387 Variable name expected in INPUT 3139 Beyond end of string
statement 3161 Comma expected
1425 Number too large 3194 Beyond end of string
1434 Number too farge 3212 Comma or parenthesis expected
1440 Characters beyond end of input 3275 SOUND parameters incorrect
number 3279 SOUND argument over 255
1635 Overflow when adding terms 3282 Zero argument to SOUND function
1678 Overflow when multiplying factors 3323 Print to file OPEN for INPUT

91

APPENDIX F: 8085 OPERATION CODES

The instruction set for the 8085 microprocessor
used in HEKTOR is presented in three forms. Table
F.1 gives the hexadecimal operation codes in
numeric order, along with the assembly language
symbolic equivalent. Table F.2 gives the symbolic

forms in alphabetical order, along with the
hexadecimal machine code equivalent. Table F.3
gives a summary of the main effects of each instruc-
tion type. More detailed description of the effects of
individual instructions is given in Subsection 6.4.

Table F.1 Instructions in operation code sequence
op
CODE MNEMONIC
00 NOP 40 MOV B,B 80 ADD B CO RNZ
01 LXI B,Dlé 41 MoV B,C 81 ADD C Cl POP B
02 STAX B 42 MOV B,D 82 ADD D Cc2 JNZ Ale6
03 INX B 43 MOV B,E 83 ADD E C3 JMP Alé6
04 INR B 44 MOV B,H 84 ADD H C4 CNZ Al6
05 DCR B 45 MOV B,L 85 ADD L C5 ©PUSH B
06 MVI B,DS 46 MOV B,M 86 ADD M C6 ADI D8
07 RLC 47 MOV B,A 87 ADD A C7 RST O
03 - 48 MOV C,B 88 ADC B C8 RZ
09 DAD B 49 MoV c,C 89 ADC C C9 RET
OA LDAX B 4A MOV C,D 83 ADC D CA JZ Al6
OB DCX B 4B MOV C,E 8B ADC E CB -
0C INR C 4Cc MOV C,H 8C ADC H CC CZ Alé6
OD DCR C 4D MOV C,L 8D ADC L CD CALL Al6
OE MVI C,DS8 4E MOV C,M 8E ADC M CE ACI D8
OF RRC 4F MOV C,A 8F ADC A CF RST 1
10 - 50 MOV D,B 90 SUB B DO RNC
11 LXI D,Dlé 51 MoV D,C 91 SUB C D1 POP D
12 STAX D 52 MOV D,D 92 SUB D D2 JNC Al6
13 INX D 53 MOV D,E 93 SUB E D3 OUT A8
14 INR D 54 MOV D,H 94 SUB H D4 CNC Alé6
15 DCR D 55 MOV D,L 95 SUB L D5 PUSH D
16 MVI D,D8 56 MOV D,M 96 SUB M D6 SUI D8
17 RAL 57 MOV D,A 97 SUB A D7 RST 2
18 - 58 MOV E,B 98 SBB B D8 RC
19 DAD D 59 MOV E,C 99 SBB C Dy -
1A LDAX D 5A MOV E,D 9A SBB D DA JC Ale6
1B DCX D 5B MOV E,E 9B SBB E DB IN A8
1C INR E 5C MOV E,H 9C SBB H DC CC Al6
1D DCR E 5D MOV E,L 9D SBB L DD -
1E MVI E,DS8 5E MOV E,M 9E SBB M DE SBI D8
1F RAR 5F MOV E,A 9F SBB A DF RST 3
20 RIM 60 MOV H,B A0 ANA B EO RPO
21 LXI H,Dlé 61 MOV H,C Al ANA C El POP H
22 SHLD Ale6 62 MOV H,D A2 ANA D E2 JPO Alé6
23 INX H 63 MOV H,E A3 ANA E E3 XTHL
24 INR H 64 MOV H,H A4 ANA H E4 CPO Al6
25 DCR H 65 MOV H,L AS ANA L E5 PUSH H
26 MVI H,D8 66 MOV H,M A6 ANA M E6 ANI D8
27 DAA 67 MOV H,A A7 ANA A E7 RST 4
28 - 68 MOV L,B A8 XRA B E8 RPE
29 DAD H 69 MOV L,C A9 XRA C E9 PCHL
2A LHLD Al6 6A MOV L,D AA XRA D EA JPE Al6
2B DCX H 6B MOV L,E AB XRA E EB XCHG
2C INR L 6C MOV L,H AC XRA H EC CPE Alb6
2D DCR L 6D MOV L,L AD XRA L ED -
2E MVI L,D8 6E MOV L,M AE XRA M EE XRI D8
2F CMA 6F MOV L,A AF XRA A EF RST 5
30 sIM 70 MOV M,B BO ORA B FO Rp
31 LXI SP,Dl6 71 MOV M,C Bl ORA C Fl1 POP PSW
32 STA Ale 72 MOV M,D B2 ORA D F2 JP Alé6
33 INX SP 73 MOV M,E B3 ORA E F3 DI
34 INR M 74 MOV M,H B4 ORA H F4 CP Al6
35 DCR M 75 MOV M,L B5 ORA L F5 PUSH PSW
36 MVI M,D8 76 HLT B6 ORA M F6 ORI D8
37 sTC 77 MOV M,A B7 ORA A F7 RST 6
38 - 78 MOV A,B B8 CMP B F8 RM
39 DAD SP 79 MOV A,C B9 CMP C F9 SPHL
3A LDA Alé6 TA MOV A,D BA CMP D FA JM Aleé
3B DCX SP 7B MOV ALE BB CMP E FB ET
3¢ INR A 7C MOV A,H BC CMP H FC CM Al6
3D DCR A 7D MOV A,L BD CMP L FD -
3E MVI A,DS8 7E MOV A,M BE CMP M FE CPI D8
3F CMC 7F MOV A,A BF CMP A FF RST 7
Note: D8 = 8-bit data

A8 = 8-bit I/O address

D16 = 16-bit data

Al6 = 16-bit memory address

92

Table F.2 Instructions in alphabetical order

oP
MNEMONIC CODE. TIME
ACI D8 CE 7 DCX H 2B 6 MOV D,D 52 4 PUSH H E5 12
ADC A SF 4 DCX SP 3B 6 MOV D,E 53 4 PUSH PSW F5 12
ADC B 88 4 DI F3 4 MOV D,H 54 4 RAL 17 4
ADC C 89 4 EI FB 4 MOV D,L 55 4 RAR 1F 4
ADC D 8a 4 HLT 76 5 MOV D,M 56 7 RC D8 6/12
ADC E 8B 4 IN A8 DB 10 MOV E,A S5F 4 RET c9 1o
ADC H 8C 4 INR A 3c 4 MOV E,B 58 4 RIM 20 4
ADC L 8D 4 INR B 04 4 MOV E,C 59 4 RLC 07 4
ADC M 8E 7 INR C oc 4 MOV E,D 5 4 RM F8 6/12
ADD A 87 4 INR D 14 4 MOV E,E 5B 4 RNC DO 6/12
ADD B 80 4 INR E 1c 4 MOV E,H 5C 4 RNZ co 6/12
ADD C 31 4 INR H 24 4 MOV E,L 5D 4 RP FO 6/12
ADD D 82 4 INR L 2C 4 MOV E,M SE 7 RPE E8 6/12
ADD E 83 4 INR M 34 10 MOV H,A 67 4 RPO EO 6/12
ADD H 84 4 INX B 03 6 MOV H,B 60 4 RRC OF 4
ADD L 85 4 INX D 13 6 MOV H,C 61 4 RST O c7 12
ADD M 86 7 INX H 23 6 MOV H,D 62 4 RST 1 CF 12
ADI D8 cé 7 INX SP 33 6 MOV H,E 63 4 RST 2 D7 12
ANA A A7 4 JC Alé6 DA 7/10 MOV H,H 64 4 RST 3 DF 12
ANA B AO 4 JM Al6 FA 7/10 MOV H,L 65 4 RST 4 E7 12
ANA C Al 4 JMP Al6 c3 1o MOV H,M 66 7 RST 5 EF 12
ANA D A2 4 JNC Al6 D2 7/10 MOV L,A 6F 4 RST 6 F7 12
ANA E A3 4 JNZ Al6 c2 7/10 MOV L,B 68 4 RST 7 FF 12
ANA H A4 4 JP Al6 F2 7/10 MOV L,C 69 4 RZ c8 6/12
ANA L A5 4 JPE Al6 EA 7/10 MOV L,D 6a 4 SBB A 9F 4
ANA M A6 7 JPO Al6 E2 7/10 MOV L,E 6B 4 SBB B 98 4
ANI D8 E6 7 JZ Al6 ca 7/10 MOV L,H 6C 4 SBB C 99 4
CALL Al6 CD 18 LDA Al6 3213 MOV L,L 6D 4 SBB D 9a 4
CC Al6 DC 9/18 LDAX B oa 7 MOV L,M 6E 7 SBB E 9B 4
CM Alé6 FC 9/18 LDAX D 1a 7 MOV M,A 77 7 SBB H 9Cc 4
CMA 2F 4 LHLD Al6 2a 16 MOV M,B 70 7 SBB L 9D 4
CMC 3F 4 LXI B,Dl6 ol 1o MOV M,C 71 7 SBB M 9E 7
CMP A BF 4 LXI D,D16 11 10 MOV M,D 72 7 SBI D8 DE 7
CMP B B8 4 LXI H,D16 21 10 MOV M,E 73 7 SHLD Al6 22 16
CMP C B9 4 LXI SP,D1l6 31 10 MOV M,H 74 7 SIM 30 4
CMP D BA 4 MOV A,A 7F 4 MOV M,L 75 7 SPHL F9 6
CMP E BB 4 MOV A,B 78 4 MVI A,DS8 K)o STA Al6 32 13
CMP H BC 4 MOV A,C 79 4 MVI B,D8 06 7 STAX B 02 7
CMP L BD 4 MOV A,D 7A 4 MVI C,D8 OE 7 STAX D 12 7
CMP M BE 7 MOV ALE 7B 4 MVI D,D8 16 7 STC 37 4
CNC Al6 D4 9/18 MOV A,H 7C 4 MVI E,D8 1E 7 SUB A 97 4
CNZ Alb ca 9/18 MOV A,L 7D 4 MVI H,D8 26 7 SUB B 90 4
CP Al6 F4 9/18 MOV A,M 7JE 7 MVI L,D8 2E 7 SUB C 91 4
CPE Al6 EC 9/18 MOV B,A 47 4 MVI M,D8 36 10 SUB D 92 4
CPI D8 FE 7 MOV B,B 40 4 NOP o0 4 SUB E 93 4
CPO Al6 E4 9/18 MOV B,C 41 4 ORA A B7 4 SUB H 94 4
CZ Alé6 cC 9/18 MOV B,D 42 4 ORA B BO 4 SUB L 95 4
DAA 27 4 MOV B,E 43 4 ORA C Bl 4 SUB M 96 7
DAD B 09 10 MOV B,H 44 4 ORA D B2 4 SUI D8 D6 7
DAD D 19 10 MOV B,L 45 4 ORA E B3 4 XCHG EB 4
DAD H 29 10 MOV B,M 46 7 ORA H B4 4 XRA A AF 4
DAD SP 39 10 MOV C,A 4F 4 ORA L B5 4 XRA B A8 4
DCR A 3D 4 MOV C,B 48 4 ORA M B6 7 XRA C A9 4
DCR B 05 4 MOV C,C 49 4 ORI D8 F6 7 XRA D AR 4
DCR C oD 4 MOV C,D 4A 4 OUT A8 D3 10 XRA E AB 4
DCR D 15 4 MOV C,E 4B 4 PCHL E9 6 XRA H AC 4
DCR E 1D 4 MOV C,H 4c 4 POP B cl 10 XRA L AD 4
DCR H 25 4 MOV C,L 4D 4 POP D pl 10 XRA M AE 7
DCR L 2D 4 MOV C,M 4E 7 POP H El1 10 XRI D8 EE 7
DCR M 35 10 MOV D,A 57 4 POP PSW Fl1 10 XTHL E3 16
DCX B OB 6 MOV D,B 50 4 PUSH B c5 12
DCX D 1B 6 MOV D,C 51 4 PUSH D D5 12
Note: D8 = 8-bit data TIME = execution time in machine

A8 = 8-bit I/O address cycles; where two times

Dl6 = 16-bit data given, longer time is if

Ale 16-bit memory address action is performed

Table F.3 Summary of 8085 instruction types

Mnemonics and operand types used in Table F.3

Symbols for 16-bit register pairs

D8 8-bit operand (data) value AF BC DE HL SP
D16 16-bit operand (data) value
M Implied address (specified by HL register R16a B D H SP
contents)
A16 16-bit memory address R16D PSW I'B b H
A8 8-bit 1/O address R16¢c B D
A3 One of 8 restart addresses
R8 8-bit register (A, B, C. D, E, Hor L)
Data Copy Group Logical Group
MOV R8,R8 Copy data between ANA RS Logical AND register/memory
MOV M.R8 register/memory and ANA M contents with A register
MOV R8.M register/memory contents
MVI R8,D8 Copy operand data to ANl D8 Logical AND operand data
MVI M.,D8 register/memory with A register contents
LDA A16 Copy data from memory ORA RS} Logical (inclusive) OR
LDAX R16c¢c to A register ORA M register/memory contents with
STA A1l16 Copy data from A A register contents
STAX R16c¢ register to memory ORI D8 Logical (inclusive) OR
LHLD A16 Copy data from memory to HL operand data with A register
register pair contents
SHLD A16 Copy data from HL register XRA R8} Logical exclusive OR register/
pair to memory XRA M memory contents with A
LX] R16a,.D16 Copy operand data to register register contents
pair XRI D8 Logical exclusive OR operand
XCHG Exchange data between HL data with A register contents
and DE register pairs CMP RS Compare register/memory
XTHL Exchange data between HL CMP M contents with A register
register pair and top of stack contents
. . CPI D8 Compare operand data with A
’igfgmeé’g Group Add register/ register contents
register/memory contents ;
ADD M } to A register contents RLC ?r(])éaitnetoAéz?rlster contents left.
ADI D8 Add operand data to A register .y
contents RRC Rotate A register contents
. right, and into Carry
ADC R8} Add register/memory and RAL R A . dc
ADC M Carry contents to A register otate A register and Larry
contents contents left
ACl D8 Add operand data and Carry RAR Rotate A register and Carry
contents to A register contents contents right '
SUB R8 Subtract register/memory CMA Complement A register
SUB M contents from A register contents
contents CMC Complement Carry contents
SuUl D8 Subtract operand data from A STC Set Carry contents to 1
register contents
SBB RS8 Subtract register/memory and
SBB M gggr’[yérc]:tcfsntents from A register Program Sequence Control Group
SBI D8 Subtract operand data and Jump if: Call if: Return if: Condition is:
Carry contents from A register JC 1 CcC) RC Carry (Carry=1)
contents JNC CNC RNC No Carry (Carry=0)
INR R8} Increment register/memory Jz lov4 RZ Zero (Zero=1)
INR M contents by 1 _
. JNZ CNZ RNZ Not Zero (Zero=0)
DCR R8 Decrement register/memory > > .
DCR M contents by 1 JP >;CP >a—; RP Plus (Sign=0)
INX R16a Increment register pair JM cM RM Minus (Sign=1)
contents by 1 _ JPE CPE RPE Parity even (Parity=1)
DCX R16a Decrement register pair JPO CPO RPO Parity odd (Parity=0)
contents by 1 JMP| CALLJ RET Unconditionally
DAD R16a Add register pair contents to
HL register pair contents PCHL) Copy data from HL register pair
DAA Adjust A register contents for to Program Counter
BCD result following addition RST A3 Call routine at restart address

94

Stack Operation Group
PUSH R16b Push register pair contents onto

the stack

POP R16b Pop top of stack data into register
pair

SPHL Copy data from HL register pair to
Stack Pointer

Input/OQutput Group

IN A8 Copy data from 1/0 device to A
register

ouT A8 Copy data from A register to /O
device

Machine Control Group

El Enable interrupt system

DI Disable interrupt system

RIM Copy Interrupt Status data to A
register

SIM Copy A register contents to
Interrupt Control

HLT Halt processor

NOP No operation

95

APPENDIX G: HEKTOR COMMAND LISTS

All commands must have terminators. For more
details, see the appropriate sections.

Monitor Commands

(Addresses are denoted by addr, addr1, etc)
B — removes a Break-point
Baddr — sets a Break-point at addr

Caddr1,addr2,addr3 — Copies data between addr?
and addr2, to locations starting at addr3

E — execute Editor

Faddr1,addr2,data — Fill memory from addr7 to
addr2 with data

E—G — (Go to) execute from saved PC address
~Gaddr — (Go to) execute from addr

H — (High-level language) execute BASIC
interpreter

L — Load from tape
Maddr — (Memory) examine and modify at addr

Paddri1,addr2 — (Print) display memory from addr?
to addr2

Qaddr1,addr2,data — (Query) search memory from
addr1 to addr2 for data

R — (Rewind) connect power to cassette recorder
Saddr1,addr2 — Save data from addr1 to addr2 on
tape

T — Test subsystems

V — Verify recorded data

W — (Warm start) Re-enter BASIC interpreter

X — eXamine and modify saved status
=1 — single-step execution from saved PC address
.1addr — single-step execution from addr

Editor Commands

A option1 option2 etc — execute Assembler
using option(s)

D/ine — Delete /ine

Dlinel.line2 — Delete from /ineT to line2

E/ine — Edit characters in /ine

lline — Insert lines after /ine

K — (Kill) delete all lines in buffer

L — (Load) append lines from tape to buffer

M — return to Monitor

Pline — (Print) display /ine

Plinel,line2 — (Print) display from /ine1 to line2

Qlinel,line2 character(s) — (Query) search from
line1 to line2 for character(s)

R — (Rewind) connect power to cassette recorder
Sline1.line2 — Save from line? to line2 on tape
V — Verify recorded lines

96

Assembler Options

(in editor's A command)

L — List program

M — return to Monitor after loading
S — display Symbol table

T — save on Tape

W — Wait if error found

BASIC keywords

Command Mode

RUN — initialize variables and execute program
GOTO n — execute program from line n

NEW — delete all program lines

LIST — list all program lines

LIST /ine 1 — list program lines starting from /ine 7
DELETE /ine 1, line 2 — delete from /ine 1 to /ine 2

SAVE “name” — save program on tape in file
labelled name

LOAD “name” — load program labelled narme from
tape

VERIFY “name” — verify program labelled name
from tape

REWIND — connect power to cassette recorder

General K eywords
STOP — stops execution

REM (or !) — remarks or comments, not to be
executed

Variables

A, B, ..., Z— numeric variables

A(index), B(index), ..., Z(index) — arrays
A%, BS, ..., Z$ — string variables

DIM — dimension array

LET variable = expression — assign the value of
expression to variable

System Variables

(R =read only; R/W =read/write)

BAUD — bit rate and parity of serial line (R/W)
COL — current column of display (R)

KSTAT — ASCII value of key pressed (R)

LED — value of peripheral board LEDs (R/W)

PW — print width allocated for numbers (R/W)
RANDOM - variable used by RND function (R/W)

BASIC keywords continued

ROW — current row of display (R)

SIZE — remaining unused memory (R)

STAT — status of peripheral board buttons (R)
SW — value of peripheral board switches (R)
TIME — value of real-time clock (R/W)

Operators

+,—,*,/ — numeric operators

>, <,>=,<=,=,< > — relational operators
& — string operator

Functions

(All arguments, while shown as X, X$, etc., can be
variables, constants or expressions.)

ABS(X) — absolute value of X

ASC(X$) — ASCII code of first character of X$
CHR$(X) — character whose character code is X
LEFT$(XS$,Y) — left-most Y characters of X$
LEN(X$) — length of string X$

MIDS$(X$,Y,Z) — Z characters from X$ starting with
the Yth

RIGHT$(X$,Y) — right-most Y characters of X$

RND (X) — pseudo-random number between 1 and
X

STR$(X) — string representation of number X
VAL(X$) — numeric representation of string X$

Flow of Control
GOTO n — execute line n next

GOSUB n — execute line n next and save return
address

FOR variable =

(a) TO (b) STEP (c)

loop in which /ines are
repeated while variable
.. lines ... varies from (a) to (b) in
NEXT variable steps of (c)

IF condition THEN statement — if condition is true,
then execute statement

RETURN — execute statement following GOSUB

Input/Qutput

CLOSE # n; — close channel number n

INPUT variable 1, variable 2, ... — read values for
variable 1, variable 2, etc. from keyboard

INPUT # n; variable 1, variable 2, ... — read values
for variable 1, variable 2, etc. from channel n.

OPEN # n; (CR or SL), (I or O), name — open
channel nto (CR or SL) for (I or O) labelled with
name

PRINT expression 1, expression 2, ... — evaluate
expression 1, expression 2, etc. and display them
on screen

PRINT # n; expression 1, expression 2, .. —
evaluate expression 1, expression 2, etc. and
send them to channel n

TAB (n) — (in PRINT statement) move cursor to
column n ’

SOUND (X,Y) — produce sound in loudspeaker of
pitch determined by period =X x 250 ps, and
length=Y x0.01 s

97

INDEX

ABS
accumulator
ACI
ADC
ADD
address bus
address/data bus
addressing modes
ADI
ALU
ANA
ANI
application programs
argument of command
argument list
editor
monitor
arithmetic/logic unit
arrays
ASC
ASCII code
assembler program
entry command from editor (A)
error messages
options
passes
program listing
symbol table
assembly language
directives
instructions
programming
statements
symbols

BASIC
arrays
assignments
character control
command mode
concatenation
control characters
dimension statements
entry command from monitor (H)
error messages
execution of program
expressions
flow-of-control statements
format control
functions
graphics characters
input/output instructions
interpreter
keywords
line numbers
lines
multiple statements
numeric expressions
numeric functions
numeric operators
numeric variables
operators
program structure
prompt ()
read-only system variables
read/write system variables
relational operators
running a program
spaces in lines
statements

98

string expressions
string operators
string variables
syntax
system variables
variables
writing programs
‘Bad-label’ error message
‘Bad instr.’ error message
‘Bad number’ error message
‘Bad register’ error message
BAUD
baud rate/parity parameters
BCD arithmetic
binary codes
binary voltages
bit
break-point
handler
command (B)
BREAK vector
bus
bus connections
byte

CALL

call instruction

cassette recorder
assembler options
BASIC instructions
cables
connection
editor commands
handler
interface
monitor commands
problems
tapes
tests

CcC

CHR$

clock

clock frequency

CLOSE #

CM

CMA

CcMC

CMP

CNC

CNZ

COL

command acceptance
editor
monitor

command characters
editor
monitor

command execution
editor
monitor

command lists

comment field
assembler directives
assembler instructions

comment lines
assembly language
BASIC

component checklist

connecting cables

connecting HEKTOR components

control characters
control signals
control unit

copy command (C)
COUTV vector

cpP

CPE

CPI

CPO

CRL

CRS

cursor

cZ

DAA

DAD

data

damage to HEKTOR
data-byte.pseudo-operation
data-word pseudo-operation
DB pseudo-operation

DCR

DCX

debugging

DELETE

delete command (D)

DI

DIM

dimension statements
display routines

DMUL

DSUB

DW pseudo-operation

edge connector

edit line command (E)

editor program
behaviour
command format

entry command from monitor (E)

line numbers
prompt (#)
structure

El

END

end-of-program pseudo-operation (END)
equate pseudo-operation (EQU)

EQU directive
error messages
even parity

examine register command (X)

execution command (G)
execution errors in BASIC

faults in HEKTOR
ferric cassettes

fetch/execute sequence (cycle)

fill command (F)
flags
auxiliary carry
carry
parity
sign
zero
flag register
format control
FOR ... NEXT loop
‘Forward ref’ error message
fuse

graphics characters
go command (G)
GOSUB

10, 22, 68
34
15, 26, 31

38, 53

21,53-54, 57, 91

GOTO

hardware malfunctions

handling precautions

heat dissipation

HEKTOR system hardware

HEKTOR system software

hexadecimal humbers
conversion

high-level language command (H)

HLT

IF ... THEN statement

immediate execution statement
implementation errors in BASIC

IN
INPUT
INPUT #
input/output
handler routines
map
parameters
structure
INR
insert command (l)
instruction fetch
instruction set
interface
interference
internal bus
interrupt
handler, editor
handler, monitor
parameters
register
signal
sources
structure
vectors
INX

JC

JM

JMP

JNC

JNZ

JP

JPE

JPO

jump instruction
Jz

K (=1024)

KBUF

KDEL

keyboard
buffer
faults
handlers
interface
routines
tests

KFLAG

KGRAF

kill command (K)

KLUC

KR

KSTAT

label field
assembler directives

assembler instructions
LDA

55,

11,

31,

25,

75,

60,

LDAX

LED (light-emitting diode)

LEFTS

LEN

LET

LHLD

line-edit command (E)

lines of text

line numbers in editor

LIST

LOAD

load-from-tape command (L)
editor
monitor

loading from tape in BASIC

logical operations

LXI

machine code
machine-code buffer
machine instructions
malfunctions
mains
fuse
plug
supply
memory
address
faults
locations
map
modify command (M)
subsystem
tests
microcomputer board
microprocessor (8085)
MID$
‘Missing opnd.” error message
MON
monitor program
behaviour
commands
command format
entry command from editor (M)
prompt (<)
structure
utility subroutine
MOV
multiplexed address/data bus
musical instructions
Mvi

nested subroutines
NEW

NEXT

NOP

numeric variables

odd parity

opcode field

opcode specification in assembler
OPEN #

operand

15, 25,

operand address specification in assembler

operand field
assembler directives
assembler instructions
operation code (opcode)
ORA
ORG
ORI
origin pseudo-operation (ORG)
ouT

100

12,

16,

86—
10,

41,

15,

25—
26—
26—

25,

13,

parts checklist
PCHL
PC register
peripherals
peripheral board
connection
faults
tests
plug (mains)
POP
popping (from stack)
POP PSW
power, loss of
power supply
circuitry
unit
PRCOL
PRERR
PRINT
PRINT #
print command (P)
editor
monitor
printed-circuit board
printer connections
PRMES
PRNL
processing unit (processor)
structure
prompts
BASIC (%)
editor (#)
monitor (>)
programs
listing
stopping
writing
program counter
PRSP
pseudo-operations
pseudo-opcode field
PUSH
pushing (onto stack)
PUSH PSW
PW

query command (Q)
editor
monitor

RAL
RAM
error messages
memory
test
usage
RANDOM
RAR
RC
read-only memory (ROM)
read-write memory (RAM)
registers
array
examine/modify command (X)
specification in assembler
REM
‘Rep. label’ error message
reset
control line
signal
switch
RET
RETURN

50
15,24, 25

15, 24, 25

REWIND

rewind command (R)
editor
monitor

RIGHT$

RIM

RLC

RM

RNC

RND

RNZ

ROM
error messages
entry points

ROW

RP

RPE

RPO

RRC

RST

RST5.5 interrupt

RST6.5 interrupt

RST7.5 interrupt

RUN

RZ

SAVE

save-on-tape command (S)
editor
monitor

saved status buffer

saved status RAM

saving on tape in BASIC

SBB

SBI

SCROLL

self-testing procedure

serial-line
connections
handlers
interface

setting-up HEKTOR

SHLD

SIM

SIN

single-step command (1)

SIZE

SOBAUD

SOUND

source lines in assembler

SOPAR

SORT routine

SOUT

SPHL

SSET

SSTOP

STA

stack
RAM

stack pointer
overflow

STAT

STAX

STC

STOP

STR$

string variables

study guide

suB

subroutines

SuUI

SW

switch-on tests

symbol table

syntax errors

system hardware
system parameter RAM
system RAM

system software
system variables

TAB

temporary register

terminator
editor
monitor

test command (T)

text buffer

text lines

THEN

TIME

timer interrupts

top of stack

transformer

TRAP interrupt

tune machine

TV
cable
connection
display problems
handlers
interface
interface test
monitor set
output routines
types of set

TVT

typing in program lines

‘Undef. symbol’ error message
unsigned integer numbers
utility subroutines (monitor)
user program

user RAM test

VAL
vectors
input/output handler
interrupt handler
VERIFY
verify tape command
editor
monitor
video socket

warm start (BASIC)
word
word length

XCHG
XRA
XRI
XTHL

& concatenation in BASIC
editor prompt

in BASIC instructions

. in editor commands

. in BASIC instructions

* BASIC prompt

; in assembly language

> monitor prompt

/ in editor commands

\ in assembler options

AAAT VY
I

Vil

102

relational operators in BASIC

61

1 single-step command in monitor 30

8085 microprocessor 41, 68
8085 instruction types 43
8155 RAM/10 device 70,75

TM222 The digital computer

6
7/8
9/10

11
12

13
14
15
16

Computers and data
The structure of the digital computer

Working with HEKTOR: Introduction to
the microcomputer

Working with HEKTOR: The 8085
microprocessor

Working with HEKTOR: Assembly
language processing

Introduction to software development
Principles of input/output operations
Working with HEKTOR: Input/output
programming :
Introduction to high-level languages

Working with HEKTOR. BASIC
programming

Project

The PDP 11 computer systems
Operating systems

File and case studies

TM222 HEKTOR User Manual

104

The Open University Press 0 335 17126 7

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104

