-~

GEC COMPUTERS LIMITED ‘ DD 1195

User Hardware Handbook — Computer

CENTRAL PROCESSOR UNIT INSTRUCTION SET

@ GEC Computers Limited 1977

The information presented herein is, to the best of our knowledge, true
and accurate. No warranty or guarantee, expressed or implied, is made
regarding the accuracy of information supplied or capacity, perform-
ance or suitability of any product or service since the manner of use is
beyond our control.

You are advised that you should ensure that the information contamed
herein has not been superseded.

All our products, materials and services are sold subject to our Condi-
tions of Sale, available on request.

GEC COMPUTERS LIMITED
Elstree Way, Borehamwood, Hertfordshire.
Telephone No. 01-953-2030

Holding Company — the General Electric Company Limited of England

December, 1977

TS 4463

CPU INSTRUCTION SET

INTRODUCTION

1.1

Notation Used

CONTENTS

PROGRAM ACCESSIBLE REGISTERS

BOPERANDS

3.1

3.2

Operand Lengths ...

Operand Addresses

INSTRUCTION FORMATS

4.1

4.2

4.3

44

Format A

Format L

Format B

Format RR...

MODES OF OPERATION

5.1

5.2
5.3
5.4

5.5

Basic Test ...

Full Nucleus

Fixed Point Mode
Floating Point Mode

Mode Control

FIXED POINT OPERATIONS

6.1

6.2

6.3

6.4

Number Representation
Mixed Length Operation
Condition Markers

Logical Operations

Page

11

11

1

1

1

12 .

12

12

14

Page

THE FIXED POINT INSTRUCTION SET: FORMATS A1—-A5

7.1 Operations on the 32 Bit Accumulator w w e e 16
7.2 Operations on Operands in Store | o e e e e 21
7.3 Operations on the X Register« . . . | 23
7.4 Operations on Y and Z Registers o v ve e e 26
7.5 Multiple Load and Store Instructions 29
7.6 Indirect Branches... e e e e e e e 30

INSTRUCTIONS AVAILABLE IN FORMATB 32

INSTRUCTIONS AVAILABLE IN FORMAT L

9.1 Operations on the 32 Bit Accumulator« W e . 33
9.2 Literal Operations on the X Register 35
9.3 Literal Operations on the Y and Z Registers 38
9.4 Condition Branch Instructions in Format L 40
9.5 Shift Instructions... ah we e e e e e 43
9.6 Bit Manipulation Instructions... 47
9.7 String Manipulation 50
9.8 ‘Miscellaneous Instructions in Format L ... 53
INSTRUCTIONé AVAILABLE IN FORMATRR wi e e e 56

FLOATING POINT OPERATION

11.1 Floating Point Number Representation 61
11.2 Floating Point Store Format 61
11.3 Floating Point Register Format 61
11.4 Normal Representation we v e e e e 62
11.5 Floating Point Zero i e wee o aee e e e 62
11.6 Mixed Precision Operation« we v e en e 62

11.7 Overflow and Underflow 63

12.

13.

THE FLOATING POINT INSTRUCTION SET
12.1 Normal Length Operations

12.2 Extended Operations

12.3 Floating Point Conversion Instructions
124 Floating Point Instructions in Format L

Appendix 12A: Floating Point Arithmetic

CONTROL INSTRUCTIONS AVAILABLE IN BASIC MODE ...

SUPPLEMENT

Supplement 1: Summary of instructions

Pags

64
66
69
69

71

74

1. INTRODUCTION

This manual describes the instruction set of the GEC 4000 Series computers, except for
Nucleus instructions CALL, ICB, SEM and SEG described in detail in CPU NUCLEUS MANUAL.

Excluding the above Nucleus instructions the instruction repertoire of the computers
contains some 165 different instructions. Certain of these instructions may be specified in 1 of 5 operand addressing
formats.

The processor is capable of performing both integer and floating point arithmetic and instructions
are provided for both modes of operation.

1.1 NOTATION USED
In this manual, the following notation is used to describe the instruction set.

a denotes the content of the 32 bit Accumulator A.

da denotes the content of the 64 bit Extended Accumulator BA.
denotes the content of the least significant 16 bits of A.

denotes the content of the least significant 8 bits of A.

denotes the content of the 32 bit Accumulator Extention B.

denotes the content of the 16 bit Index register X.

denotes the content of the 16 bit Y register,

denotes the content of the 16 bit Z register.

denotes the content of the 16 bit Sequence Register S.

denotes the content of the 16 bit Local Workspace Register L.

fa denotes the short floating point number in the Floating Accumulator.
ea denotes the long floating point number in the Floating Accumulator.
Q denotes the operand address generated by an instruction.

wq denotes the fullword store operand of an instruction.

hg denotes the halfword store operand of an instruction.

bg denotes the byte store operand of an instruction.

fq denotes the short Floating Point operand of an instruction.

eq denotes the long Floating Point operand of an instruction.

T U N XTI
o N

2. PROGRAM ACCESSIBLE REGISTERS

The following program accessible registers are provided.

32 bit Accumulator, A

The accumulator is divided into two 16 bit registers AM and AL.. This accumulator is.used-to hold
the result of fixed point arithmetic and logical operations. It is also used to hold the least significant 32 bits of the
mantissa in the case of long floating point operations.

32 bit Accumulator Extension, B

This register is divided into two 16 bit registers BM and BL and is used to hold remainders in integer
divide instructions and the mantissa of the result in normal length floating point operations.

BM and BL may be used in conjunction with AM and AL to provide a 64 bit register and in this
case the most significant register is BM and the least significant is AL. This 64 bit register is used to hold products

in fixed point multiply instructions and to hold the mantissa of the result in extended-length, floating-point
operations.

16 bit X Register

The X register is used as an index register to address array elements in store. It may also be used as
a secondary accumulator and a comprehensive set of instructions is provided for this purpose.

16 bit Y and Z Registers

Both Y and Z registers are used to hold the base address of areas of data such as records. A restricted
instruction repertoire is provided for operations on Y and Z.

16 bit L Register

This is a local workspace pointer register and holds the base address of the area of store
containing the local workspace of a program. The L register is operated on by Nucleus branch instructions
and by instructions using data held in other registers.

16 bit S Register

This is the sequence control register and normally contains the address of the next instruction in
sequence. All instructions are 16 bit halfwords and this register is incremented by 2 for each instruction executed.
The S register is operated on by branch instructions and by instructions using data held in other registers.

8 bit C Register

This is the control register and contains various flags that may be set by a program at any time.

These flags are referred to as ‘Condition Markers’ and are fully described in section 6.

The register holds condition markers as follows:—
0

~3

0100 VN |Z JOFICA

FM - FLOATING MARKER

N - NEGATIVE CONDITION MARKER
Z - ZERO CONDITION MARKER

OF - OVERFLOW CONDITION MARKER

CA - CARRY CONDITION MARKER

3.1

Byte.

(a)

(b)

(c)

3.2

OPERANDS

OPERAND LENGTHS

Information is mahipulafed in multiples of eight bits. Each 8 bit unit of information is called a

Bytes may be handled separately or grouped together as follows.

Halfwords

A Halfword comprises two consecutive bytes. The low addressed byte of the item must be held

at a byte address divisible by two in main store. Instructions and single precision integer operands
are held as Halfwords. '

Fullword

A Fullword comprises 4 consecutive bytes. The low addressed byte of the item must be held at a
byte address divisible by 4 in main store. Double length integer operands and short Floating Point

operands are heid as Fullwords.

Double Word
A Double Word comprises 8 consecutive bytes. The low addressed byte of the item must be held

at a byte address divisible by 8 in main store. Long Floating Point operands are held as Double
words.

OPERAND ADDRESSES

Each store reference instruction specifies directly or indirectly the required operand address and

che type of operand i.e. Byte, Halfword, Fullword or Double Word. The operand addresses are formed as described
" in section 4 and the hardware ensures that an operand address of the correct form is presented to the main store

at every access. i.e. If a Halfword is requested from store the least significant bit will be forced to zero. Similarly,
for other store addresses:—

TYPE OF STORE ACCESS LEAST SIGNIFICANT
3 STORE ADDRESS BITS
Byte) X X X
Halfword XX0
Fullword X000
Double Word 000

4. INSTRUCTION FORMATS

Eight instruction formats are provided, known as formats A1, A2, A3, A4, A5, B, RR
and L. The 16 bits of an instruction are divided into several fields which together specify the operation to be
performed and where necessary the operand address.

Formats A1 to A5 are referred to as format A instructions and have a common instruction set.
Each format provides-a different method of forming the operand address. A separate set of instructions is available

in'each of the formats B, RR and L.

4.1 FORMAT A

Instructions specified in this format are used for arithmetic, and Iogical operations. Some instructions
in this format may be performed in either integer mode or floating mode under control of the FM flag (section 6).

Format Al

MS o 5 6.7, 8 : 15 LS

Of the 16 bits used to define the instruction the most significant 6 bits (0—5) are used to specify
one of 64 possible instructions. The next 2 bits (6 and 7) specify the format and the final 8 bits are the displace-
ment field that defines the address.

In this format the displacement is used to form the operand store address, after scaling as described
below. D* denotes the scaled displacement.

[y

0

D* MAIN

STORE

MS BYTE
OF

| B
REIC;L!’E:\;*ED——v Q 77T TIITIIIT]

The displacement field is scaled according to operand length, If a byte operand is required
no scaling takes place and the eight bits of the displacement field are able to access any of the first 256 bytes
of virtual store. An instruction requiring a halfword operand may access 256 halfwords in the first 512 bytes of
virtual store. Similarly 256 full words in the first 1024 bytes of virtual store or 256 double words in the first
2048 bytes of virtual store. . This format is used for accessing global simple variables.

Format A2

F 11 M D

The most significant 8 bits specify the function as in format A1. Bit 6 specifies the format whilst
bits 7 and 8 (M Field) define how the D Field is to be used, to define the operand address. In this format the scaled
displacement field is added to a base register specified by the M Field.

BASE ADDRESS

/Y . ‘ START OF DATA

Dﬂ'

MSBYTE
OF

REQUIRED *
ITEM —® 7l

The displacement field is scaled as for format A1 and the 7 bits of this field may be used to access
one of 128 items (bytes, halfwords, words, or double words) in the area defined by a base register.

Operand addresses are formed as tabulated with the value of the M field selecting base registers L.,
S, YorZ. ‘ :

In the following table D* denotes the scaled displacement field.

M OPERAND ADDRESS
0 .1 +D*
1 s+ D*
2 . y+D*
3 Cz+D*

The L register normally holds a pointer to the local data needed in a program chapter. Mode 0 is
thus used to access local simple variables.

Mode 1 is used to access constants held in the same area of store as the code for a particular
program chapter. These constants must be at a higher address in store than the instruction that accesses them.

Registers Y and Z normaily hold pointers to records, and therefore modes 2 and 3 are used to
access general simple variables.) ’

Format A3

The most significant six bits are used to specify the function as in format A1, Bits 6,7,8 and 9
specify the format and the final 6 bits are the displacement field that defines the store address. In this format a
halfword in store is accessed and used to form the base address of an array. This base address is then indexed to
form the address of a selected array element. The index register x is scaled according to the length of

the element being accessed.

ARRAY &
ELEMENT

REQUIRED

POINTER

START OF ARRAY

AT T T

x* (scaled todength of
element being
accessed)

This format is used to access global arrays, the 6 bits of the displacement field allowing up to 64

array pointers to be used.

Format A4

5.6 7,8 910

15

The most significant six bits are used to specify the function as in format A1. Bits 6,7 and 8
specify the format whilst 9 and 10 define the way in which the displacement field is to be used, to form the
operand address. In this format the displacement field is always scaled for a halfword and then added to a base
register specified by M. The address so formed is used to access a halfword operand from store, which forms
the base address of an array. The operand is indexed with x to form the address of an individual array element.
The index register x is scaled according to the length of the element being accessed.

BASE ADDRESS
. >

s

Y
z D*

(scaled .
for
halfword)

START OF DATA

POINTER

START OF ARRAY

ARRAY ELEMENT

x* (scaled to tength of
element being
accessed)

The 5 bit displacement field may be used to access one of 32 array pointers in an area of
store defined by a base register.

Operand addresses are formed as tabulated with the value of the M field selecting base registers
L,S, YorZ

in the following table D denotes the value of the displacement field in the instruction and x*

denotes the scaled value of the x register.

M OPERAND ADDRESS
0 (I +2D) + x*
1 (s +2D) +x*
2 {(y+2D)+ x*
3 (z+2D)+ x™

Mode 0 is used to access local arrays of data.

Mode 1 is used to access arrays of constants that are held in the same area of store as the code for
a particular program chapter, these constamnts being at higher store addresses than theinstructions accessing them.

Modes 2 and 3 are used to access arrays of data held in records.

Format A5

0 5§ 6 7 8 9106 1112 15

F 010/0j0} M D

The most éignificant six bits are used to specify the function as in format A1. Bits 6,7,8 and 9

specify the format whilst 10 and 11 define the way in which the operand address is formed. This format is
similar to the A2 format except that the scaled displacement field is added to a base register and then indexed,

before forming the operand address.

? START OF DATA ’
D*
(scaled)
—t—-—-—'—’ START OF ARRAY '
4 (D+x)*
x*
(scaled) :
L“" [T AL "‘—"—!-—'

The d:splaoement field and. x are scaled according to the length of the item to be accessed from store.
The four bits of displacement field enable 16 items (bytes halfwords, words or doublewords) to be accessed from

store in the area defined by a base register and the index register x.

Operand addresses are formed as tabulated with the value of M field selecting base registers L, Y or

In the following table D* denotes the scaled displacement field and x* denotes the scaled value of
the x register.

M OPERAND ADDRESS
0 I+ D* + x*
1 D* + x*
2 y+D* + x*
3 z+D"+x*

Mode 0 is used to access local arrays of data.

Mode 1 is used to access global arrays of data.

Modes 2 and 3 are used to access arrays of data such as records and vectors.
4.2 FORMATL

The instructions specified in this format are literal instructions and generally do not require an
operand from store.

MS } LS
0 1 2 ‘ 7 8 15

010 F D

For this format the two most significant bits (0—1) are always zero. The next 6 bits (2—7) specify
the function and the remaining 8 bits are used as follows:~

(@) As an 8 bit unsigned literal operand. Any number between 0 and 255 can be represented.

(b) Some conditional branch instructions are specified in this format and here the displacement field
is treated as a signed integer, to specify a branch destination. This destination may be within 127
halfwords (i.e. instructions) forward or 128 halfwords backward relative to the next instruction
in sequence.

"Thus: Operand address =S 2D

(c) Where a literal operand is not required and the instruction is not a conditional branch,bits 8—15 are
used in conjunction with the F bits to further define the instruction {e.g. shifts and control functions).

43 FORMAT B

Two instructions only are specified in this format and both are unconditional branches.

0 5 6 15

The two instructions in this format are defined by the F bits, the most significant 4 bits (bits 0—3)
are always zero. The remaining 10 bits are used as a signed integer to specify the branch destination. This destin-
ation address may be within 511 halfwords (i.e, instructions) forwards or 512 halfwords backwards relative to the
next instruction in sequence. ‘

Thus: Destination Address =S * 2D

Since instructions are always 16 bit halfwords the displacement field in format B instructions is
always multiplied by 2. At the start of the execution of any instruction, the sequence control register (S) always
points to the next instruction in sequence. Therefore all branches are relative to the next instruction in sequence
and not the current instruction. .

EXAMPLE 1

INSTRUCTION

]

STORE MAP
ADDRESS

00b0010000001011
BRANCH +1

CONTENTS

n
n+2

nt4 ——P
4

1
HALFWGRD
LOCATIONS

n+26 ——§

EXAMPLE 2
INSTRUCTION =

STORE MAP
ADDRESS

INSTRUCTION
BRANCH + 11
INSTRUCTION
INSTRUCTION
INSTRUCTION
INSTRUCTION
INSTRUCTION
INSTRUCTION -y
INSTRUCTION :
INSTRUCTION
INSTRUCTION
INSTRUCTION
INSTRUCTION

BRANCH DESTINATION

0000011111110101
BRANCH -1

CONTENTS

n

n+2 —p»
4

1
HALFWORD
LOCATIONS

n+24 —'——»

4.4 FORMAT RR

INSTRUCTION

BRANCH DESTINATION
INSTRUCTION
INSTRUCTION
INSTRUCTION
INSTRUCTION _
INSTRUCTION [}
INSTRUCTION
INSTRUCTION
INSTRUCTION
INSTRUCTION
BRANCH - 11
INSTRUCTION

The instructions specified in this format are register to register instructions.

3 4 5 6 9. 10 1213 15,

0j0}0 F G1 G2

The first 6 bits (0—5) are always zero. The next 4 bits (6—3) define 16 possible instructions,

which are further defined by bits 10—15.

v Format RR instructions are used for operations between registers, The two registers taking part
in an operation are defined by G1 and G2. G1 specifies the destination register and G2 specifies the source
register as follows:—

G1,G2 REGISTER

-0 (see below)
A (32 bits)
B {32 bits)
X (16 bits).
L (16 bits) -
S (16 bits)
Y (18 bits)
Z (16 bits)

NOODAWN -0

Register O is a non-existent dummy register. If used as a source it appears to contain zero; if used

as a destination the result is lost but the condition markers record the result of the operation.

10

5. MODES OF OPERATION

The CPU has two diff’ergnt modes of operation, basic test and full nucleus. Within these two
modes of operation, two further modes are provided, integer mode and floating point mode.

5.1 BASIC TEST

This mode of operation is provided in order to more easily test the central processor basic instruction
set. Most of the microprogram controlling the nucleus is disenabled and the computer * becomes a machine capable
of running only 2 programs simultaneously. One is the normal operating program, the other being entered on receipt
of an interrupt as described in section 13. All addresses are 16 bit absolute addresses and thus 64kBytes of store
may be accessed. Certain additional instructions are provided in this mode to facilitate input/output and interrupt
handling. These instructions are described in section 13.

) Should these instructions be specified when the machine is in full nucleus mode they are treated as
undefined instructions (refer to CPU Nucleus Manual).

Further modifications to the functioning of the CPU are:
1) The action taken when an Input Output Processbr or Error interrupt occurs (refer to section 13).

(2) The action taken as a result of depressing certain switches on the front panel {(IPL1, IPL2, START/
STOP). This is described in CPU Controls and Monitor Unit Manual.

(3) The ‘TRIG C.P. facility becomes available enabling a program to be restarted at a selected point
{see CPU Controls and Monitor Unit Manual).

5.2 FULL NUCLEUS
I this mode, addresses generated by the program are 16 bit virtual addresses and are mapped into

absolute addresses by the mechanism described in the CPU Nucleus Manual. Control instructions in this mode are:
CALL, SEMAPHORE INTER-CHAPTER BRANCH and SEGMENT and these are fully described in the CPU Nucleus manual.

5.3 FIXED POINT MODE
In this mode of operation the fixed point instruction set described in sections 7 — 10 is provided.

5.4 FLOATING POINT MODE

In this mode of operation certain instructions are treated as floating point instructions as
described in section 11.

5.5 | MODE CONTROL

Fhe modes of operation described in 5.1 and 5.2 above are controlled by a switch on the CMU
front panel (see CMU Document) and under certain conditions by the SFN instruction (see section).

The modes of operation described in 5.3 and 5.4 are controtled by the FM flag .in the control
register which can be manipulated by the program as described in section 6.

11

6. FIXED POINT OPERATIONS

The fixed point instruction set performs binary arithmetic on operands serving as addresses and
index quantities as well as fixed point data. Operands may be 16 bits or 32 bits long and may be held in one of
the program accessible registers or in the main store. Both operands are signed 16 or 32 bits long, negative
quantities being held in two's complement form. Condition markers are set as a result of most arithmetic and
logical operations. Addresses are sometimes treated as positive 16 bit integers.

6.1 ’ NUMBER REPRESENTATION
Fixed point operands are treated as 16 or 32 bit signed binary integers.

Positive integers in the range 0 : 2'5- 1 (16 bit) or 23! - 1 (32 bit) are represented directly. The
most significant bit of an operand representing a positive integer will therefore be zero.

Negative integers in the range -2!° : - 1 (16 bit) or - 2%! : - 1 {32 bit) are represented by subtracting
the magnitude of the number from 2% (16 bit) or 232 (32 bit). The most significant bit of a negative operand will
therefore be a one.

Since the most significant operand bit can be used to distinguish the sign of an operand, it is referred
to as the sign bit. This representation is known as 2s complement notation. The range of numbers which can be
represented is therefore

-2 <N 2'5 - 1 (halfword operands)
or -2%1 <N <.2%! -1 (fullword operands)

6.2 MIXED LENGTH OPERATIONS

A 16 bit 2s complement integer can be converted into the equivalent 32 bit representation as follows: -
the least significant 16 bits of the 32 bit integer are the same as the original 16 bit integer, and the sign bit of the 16
bit integer is replicated throughout the most significant 16 bits of the 32 bit integer.

boby by vl b];J 16 bit integer
¢ T3 l l | l
Bgp.ooevivinannnns bo : bgbyby.viiiiiianasd bys Equivalent 32 bit integer

This process is referred to as ‘sign extending’. It is therefore possible to perform operations between
32 bit and 16 bit integers provided 16 bit operands are sign extended to 32 bits before the operation is performed.

6.3 CONDITION MARKERS

There are four condition markers N, Z, OF and CA which are used to record information about an
operation. This information may subsequently be tested with a conditional branch instruction, in considering the
information conveyed by these markers it is necessary to distinguish between two results that an operation may
produce. The first is the TRUE result, obtained by applying the rules of binary arithmetic to the operation, the
second is the APPARENT result obtained by taking the least significant n bits of the true result, where n is the
number of bits available for recording the result.

The meanings of the condition markers are as follows:—
The Negative Condition Marker (N)

This is a single bit set to the sign of the true result of the last operation performed. Thus, it is set
to a logical 1 if the true result is negative and to a logical 0 if the true result is positive.

12

The Zero Condition Marker (Z)

This is a single bit set to a logical 1 if the apparent result of the last operation performed is zero,
and is reset to logical O if the apparent result of the last operation performed is non-zero.

The Overflow Condition Marker (OF)

This is a single bit set ta a logical 1 if an operation produced overflow since the. flag was last reset
i.e. the apparent result is different from the true result. This flag is reset by obeying the instruction ‘Branch on
Overflow".

The Carry Condition Marker (CA)

This is a single bitwhich, following an add operatibn is set to logic 1 if the opération produced a carry
out of the most significant.bit position, and is otherwise reset to 0, and following a subtract operation is set to logic 1
if the operation produced a borrow out of the most significant bit position, and is otherwise réset to zero.

Floating Marker

This is a single bit that controls the floating point feature of the computer. When this flag is reset
to a logical O certain instructions operating on the accumulator are interpreted as Integer Operations. When this
flag is set to a logical 1 these instructions are interpreted as Floating Point Operations and a small set of additional
instructions are made available. '

The flag may be set or cleared by control instructions in format L (see section 9) or by use of the
Load Multiple Instruction. A further way to clear the FM flag is by use of one variant of the Call instruction
(described in CPU Nucleus Manual).

During input/output these flags are used for special purposes.

Examples of negative, zero and overflow and carry conditions are given below assuming eight bits
are available to hold the result of the calculation. The carry out bit is also shown, in parentheses:—

Addition
(a) +57 = 00111001 Negative reset
+35 = 00100011 Zero reset
+92 = (0)01011100 Overflow not set
. J Carry reset
(b) +57 = 00111001] Negative reset
35 = 11011101 Zero reset
>
+22 = (1)00010110 Overflow not set
) Carry set
() -57 = 11000111) Negative set
92 - 10100100 | Zeroreset
-149 = (1)01101011 Overflow set (Out of range.Result < -128).
J Carry set
(d) +57 = 00111001 Negative reset,
' 492 = 01011100 Zero reset
+149 = (0)10010101 Overflow set (neg.resuit)

Carry reset

13

6.4

{a)

(b)

{c)

(d)

Multiplication (Carry Not Affected)

+35 = 00100011
43 = 00000011
+1056 = 01101001
+35 = 00100011
~3 = 11110
-106 = 10010111
+35 = 00100011
+4 = 00000100
+140 = 10001100
+32 = 00100000
+16 = 00010000
+512 = 1000000000
LOGICAL OPERATIONS

The condition markers are used in the same way as for integer arithmetic operations, except that

Negative reset
Zero reset

Overfiow not set

Negative set

Zero reset

Overflow not set

Negative reset
Zero reset

Overflow set

Negative reset
Zero set

Overflow set

carry and overflow stats are unaffected by logical operations.

14

~

1. THE FIXED POINT INSTRUCTION SET: FORMATS A1-A5

The following describes the basic fixed point instruction set of the computer, i.e. those
instructions provided when FM is set to logic 0. The Floating point instructions in section 12 are not available.

7.1 OPERATIONS ON THE 32 BIT ACCUMULATOR

The following instructions are available:—

LDB — LOADBYTE
LD — LOAD HALFWORD
LDW -~ LOADWORD
STB — STOREBYTE
ST — STORE HALFWORD
STW — STORE WORD
AD — ADD HALFWORD
ADW — ADDWORD
SB — SUBTRACT HALFWORD
SBW — SUBTRACT WORD
cpPB — COMPAREBYTE
cp —~ COMPARE HALFWORD
CPW — COMPARE WORD
N — AND HALFWORD
NW — AND WORD
M — MULTIPLY HALFWORD
mMw — MULTIPLY WORD
D — DIVIDE HALFWORD
DW — DIVIDEWORD
LDB
0 5,6 15
010000 ADDR

LOAD BYTE: a:=bg. The byte is loaded into the A register from store and is extended to 32 bits by most
significant zeros before the operation. This instruction therefore loads the least significant byte of the accumulator
and clears the most significant 24 bits. The final value in A will lie in the range O to 255.

Condition Markers
N — s cleared by the instruction
Z — issetif the 32 Bit accumulator is zero otherwise it is cleared
CA - notaffected ’ ‘
OF - not affected
LD
0 5,6 ; 15
100000 ADDR (FM = 0 only)

LOAD: a:=hg. The halfword operand is loaded from store and is sign extended to 32 bits before the operation.
The instruction therefore loads the least significant 16 bits (AL) of the accumulator with the operand and loads the
most significant 16 bits (AM) with the operand extension.

15

LDW

Condition Markers

N
zZ
Cc4
OF

is set to the sign of the 32 bit accumulator after the load
is set if the accumulator is zero after the operation otherwise it is cleared
not affected ' ‘

" not affected

0 5,6 15
101000 ADDR (FM =0 only)

LOAD WORD: a :=wg. The 32 bhit operand is loaded from store.

STB

Condition Markers
N — issetto the sign of the 32 bit accumulator after the load
Z ~ s setif the accumulator is zero after the operation otherwise it is cleared
CA ~ notaffected
OF ~ notaffected
0 5 .6 15
010111 ADDR

STORE BYTE: bqg :=ba. The least significant byte of the 32 bit accumulator is stored.

ST

Condition Markers
N -~ iscleared by the instruction _
Z - issetif the byte to be stored is zero otherwise it is cleared
CA — notaffected
OF — notaffected
0 5,6 18
100111 ADDR (FM =0 only)

STORE: hq:=ha. The least significant 16 bits of the accumulator (AL) are stored.

16

Condition Markers

N — s set to the most significant bit of the halfword stored

Z — issetif the halfword stored is zero otherwise it is cleared

CA —~ not affected

OF — s set if the 16 bit halfword stored is not equal in value to the original 32 bit

content of A.

STW

1011 11 ADDR : (FM =0 only)

STORE WORD: Wq := a. The 32 bit accumulator (Ap and AL) is stored.

Condition Markers
N - isset to the sign of the 32 bit accumulator
Z — issetif the 32 bit accumulator is zero otherwise it is cleared
CA - notaffected)
OF — not affected
AD
0 5 6 15
1000 01 ADDR (FM =0 only)

ADD: a := a + hg. The halfword operand from store is sign extended to 32 bits before being added to the
contents of the accumulator. Arithmetic is performed over 32 bits.

Condition Markers
N~ issetif the true result is negative
VA - is set if the result in the 32 bit accumulator is zero, otherwise it is cleared
CA - issetif there is a carry out of the most significant bit of the 32 bit accumulator
otherwise it is cleared
OF — issetif arithmetic overflow occurs otherwise it remains unchanged.
SB
0 5,6 15
1 00010 ADDR (FM =0 only)

SUBTRACT: a := a~ hq. The halfword operand from store is sign extended to 32 bits before being subtracted
from the contents of the accumulator. Arithmetic is performed over 32 bits.

Condition Markers

N — s setif the true result is negative

Z - issetif the result in the 32 bit accumulator is zero, otherwise it is cleared

CA - issetif thereisa borrowout of the most significant bit of the 32 bit accumulator
otherwise it is cleared.

OF — s set if arithmetic overflow occurs otherwise it remains unchanged.

17

ADW

0 § 6 ‘18

101001 ADDR {FM =0 only)

ADD WORD: a :=a + wq. The 32 bit operand from store is added to to contents of the 32 bit accumulator.

SBW

Condition Markers

N
VA
CA

OF

is set if the true result is negative

is set if the result in the 32 bit accumulator is zero, otherwise it is cleared

is set if there is a carry out of the most significant bit of the 32 bit accumulator
otherwise it is cleared. '

is set if arithmetic overflow occurs otherwise it remains unchanged.

0 5 6 15

10 1010 ADDR (FM =0 only)

SUBTRACT WORD: a:= a - wq. The 32 bit operand from store is subtracted from the contents of the 32 bit

accumutator.

CPB

Condition Markers

N is set if the true result is negative

Z is set if the result in the 32 bit accumulator is zero, otherwise it is cleared

CA is set if thereis a borrow out of the most significant bit of the 32 bit accumulator
otherwise it is cleared

OF is set if arithmetic overflow occurs otherwise it remains unchanged.

0 5§ 6 15

010011 ADDR

COMPARE BYTE: form ba - bq. The byte from store is extended to 32 bits by most significan: zeros before
being compared with the contents of the 32 bit accumulator. The contents of the accumulator are unaffected
by this instruction.

18

Condition Markers

N is set if the 32 bit accumulator is less than the zero extended byte from store,
otherwise it is cleared.

Z is set if the 32 bit accumulator is equal to the zero extended byte from store,
otherwise it is cleared.

CcA not affected

OF not affected

Ccp

0 v 5 6 15
100 01 1 ; ADDR (FM = 0 only)

COMPARE: form a ~ hg. The halfword operand from store is sign extended to 32 bits before being compared with
the contents of the 32 bit accumulator. The contents of the accumulator are unaffected by this instruction.

Condition Markers
N - i set if the 32 bit accumulator is less than the sign extended halfword operand
from store, otherwise it is cleared.
Z — issetif the 32 bit accumulator equals the sign extended operand from store,
otherwise it is cleared. .
CA ~ s set if thereis aborrow out of the most significant bit of the function unit as a
result of the comparison otherwise it is cleared.
OF - s set if arithmetic overflow occurs otherwise it remains unchanged.
CPW
0 5 6 . 15
101011 ADDR (FM =0 only)

COMPARE WORD: form a - wq. A 32 bit operand from store is compared with the contents of the 32 bit
accumulator.

Condition Markers
N — issetif the 32 bit accumulator is less than the 32 bit operand from store.
Z - — issetif the 32 bit accumulator is equal to the 32 bit operand from store,
otherwise it is cleared.
CA — = issetif thereis aborrow outof the most significant bit of the function unit as a
. result of the comparison otherwise it is cleared.
OF — s setif arithmetic overflow occurs otherwise it remains unchanged.
N
0 , 5.6 15
1100100 ADDR ' " (FM =0 only)

AND: a := a A hq. The halfword operand from store is sign extended to 32 bits before being used to form the
logical AND function with the contents of 32 bit accumulator. The result is placed in the accumulator.

Condition Markers

N - isset to the sign of the 32 bit accumulator after the operation.

Z — issetif the 32 bit accumulator is zero after the operation, otherwise it is cleared.
CA — notaffected.
OF — not affected.

19

NW

AND WORD: a:=

0 5.6 15
101100 ADDR {FM = 0 only)

a A wq. The 32 bit operand from store is used to perform the logical AND function with the

contents of the 32, bit accumulator. The result is placed in the accumulator.

Condition Markers
N — s set to the sign of the 32 bit accumulator after the operation.
Z - issetif the 32 bit accumulator is zero after the operation, otherwise it is cleared.
CA - notaffected. :
OF — not affected..
M
° 5.6 15
100101 ADDR (FM =0 only)

MULTIPLY: a := a » hq. The halfword operand from store (Multiplier) and the jéontents of the 32 bit accumulator

{multiplicand) are multiplied together to form a 48 bit product. The result (in the accumulator) is the least significant

32 bits of the true product.

Condition Markers

N~ s setif the true product in A is negative.

Z — s set if the least significant 32 bits (i.e. the result in the accumulator) is zero,
otherwise it is cleared.

CA - notaffected. ; '

OF — is set if significant bits are lost by truncating the product from 48 to 32 bits.

MW

0 5 6 15

101101 ADDR {FM = 0 only)

MULTIPLY WORD: da :=a » wg. The 32 bit operand from store {Multiplier) and the contents of the 32 bit
accumulator (multiplicand) are multiplied together to form a 64 bit product. The result is held in the 64 bit
extended accumulator {BA) with the most significant bits in B and the least significant 32 bits in A.

Condition Markers

N — issetifthe true result in A is negative.

Z — issetif theresult in BA is zero, otherwise it is cleared.

CA - not affected.

OF — cannot occur since the result in BA is the true 64 bit integer product.

0 5§ 6 15

t00110 ADDR (FM = 0.oniy)

DIVIDE : a:=a+hq b := remainder. The contents of the 32 bit accumulator (dividend) are divided by a halfword
from store (divisor) and the result in the accumulator is the 32 bit integer quotient. The 32 bit remainder is held in
B. The sign of the remainder is always equal to the sign of the dividend.

For example:—
DIVIDEND | DIVISOR || QUOTIENT | REMAINDER
+5 +2 +2 +1
~5 +2 -2 -1
+5 «2 -2 +1
-5 -2 +2 -1
Condition Markers
N = s setif the quotient in A is negative.
Z — s set if the 32 bit result is zero, otherwise it is cleared.
CA -~ notaffected
OF — s setif the divisor is zero or if the divisor is -1 and the dividend is 23!,

Under these circumstances A, B, N and Z are undefined.

DW

0 5 6 15

101 110f ~ ADDR (FM =0 only)

DIVIDE WORD: a :=da+wq b :=remainder. The contents of the 64 bit extended accumulator BA (dividend)

are divided by the 32 bit operand from store (divisor). The result, in the accumulator, is the least significant 32 bits
of the quotient and the 32 bit remainder is held in B. As in DIVIDE the sign of the remainder is always equal to the
sign of the dividend.

Condition Markers

N~ issetif the quotient in A is negative.

Z — s setif the 32 bit accumulator is zero otherwise it is cleared

CA - notaffected

OF — s setif the quotient is out of range i.e. if more than 32 bits are required to

hold the resulting quotient. An example is all numbers greater than 2°! divided
by +1. If overflow occurs A, B, N and Z are undefined.

7.2 OPERATIONS ON OPERANDS IN STORE

The following instructions are available:—

NBS — ANDBYTEINSTORE

OBS — ORBYTEINSTORE

XBS ~— EXCLUSIVE ORBYTE IN STORE
DECS — DECREMENT STORE

INCS — INCREMENT STORE

21

~
NBS

0 s 6 15

910100 ADDR

AND BYTE IN STORE: bq:=bq A ba. A byte operand from store is used to perform the logical AND function
with the least significant byte of the accumulator (i.e. bits 8—15 of AL)' The result is returned to store and-the accum-
ulator is unchanged.

Condition Markers
N — s cleared by the instruction.
Z — s setif the result of the operation (that is returned to store) is zera,
otherwise it is cleared.
CA - notaffected.
OF — not affected.
N
OBS
5,6 15
01 0101 ADDR
OR BYTE IN STORE: bq := bg V ba. A byte operand from store is used to perform the logical OR function with
the least significant byte of the accumulator (i.e. bits 815 of A). The result is returned to store and the accum-
ulator is unchanged.
Condition Markers
N — iscleared by the instruction.
Z — issetif the result of the operation (that is returned to store) is zero,
otherwise it is cleared.
CA — notaffected.
OF — not affected.
N
XBS
o 5.6 15
0101 10| ADDR
EXCLUSIVE OR BYTE IN STORE: bqg := bqg % ba. A byte operand from store is used to perform the logical
EXCLUSIVE OR function with the least significant byte of the accumulator (i.e. bits 815 of A). The result
is returned to store and the accumulator is unchanged.
Condition Markers
N — iscleared by the instruction
Z — - issetif the result of the operation (that is returned to store) is zero,
. otherwise it is cleared.
CA -~ notaffected.
OF — not affected. | —~

(‘\

DECS

15

010010

ADDR

DECREMENT STORE: hq :=hq -1. The halfword operand from store is decremented by 1 and returned
to the store. None of the registers in the central processor are affected.

Condition Markers
N - isset to the true sign of the decremented operand
YA -
c4 -
the halfword operand.
OF -

INCS

is set if the decremented operand is zero, otherwise it is cleared.

is set if the subtraction causes arithmetic overflow.

is set if the subtraction causesaborrow outof the most significant bit of

0111 11

ADDR

INCREMENT STORE: hq :=hqg+ 1. The halfword operand from store is mcremented by 1 and returned to the
store. None of the registers in the central processor are affected.

Condition Markers

N

VA -
CA -
the halfword operand.
OF — issetif the addition causes arithmetic overflow.
7.3 OPERATIONS ON THE X REGISTER

is set to the true sign of the incremented operand.

is set if the incremented operand is zero, otherwise it is cleared
is set if the addition causes a carry out of the most significant bit of

The followirig instructions are provided: —

LDX
LBX
STX
ADX

SBX

MX
DX
NX
CPX

LDX

LOAD X REGISTER

LOAD BYTE TO X REGISTER

STORE X REGISTER
ADD X REGISTER
SUBTRACT X REGISTER
MULTIPLY X REGISTER
DIVIDE X REGISTER
AND X REGISTER
COMPARE X REGISTER

0o 5 6

15

110000

ADDR

LOAD X REGISTER: x := hq. The 16 bit X register is loaded with a halfword operand from store.

23

LBX

Condition Markers

N

Z

CA
OF

is set to the sign of the 16 bit X register after the operation.
is set if X is zero after the operation otherwise it is cleared.

not affected.

not affected.
0 5,6 15
01000 1 ADDR

LOAD BYTE TO X REGISTER: x := ba. A byte operand from store is loaded into the least significant byte of the
X register. The operand byte is expanded to 16 bits by most significant zeros before being loaded into the X register,

STX

Condition Markers
N - iscleared by the instruction.
Z — s setif the X register is zero after the operation, otherwise it is cleared.
CA - notadffected.
OF — not dffected.
0 5,6 15
11011 1 ADDR

STORE X REGISTER: hq :=x. The 16 bit register is stored at a halfword address.

ADX

Condition Markers
N~ isset to the sign of the stored operand.
Z - s set if the stored operand is zero, otherwise it is cleared.
CA — notaffected.
OF — not affected.
0 5,6 15
11000 1 ADDR

ADD TO X REGISTER: x :=x + hq. The halfword operand from store is added to the contents of the 16 bit

X register.

24

Condition Markers

N
Z .
CA

OF

is set to the true sign of the X register after the operation.

is set if the X register is zero after the operation otherwise it is cleared.
is set if there is a carry out of the most significant bit of the X register,
otherwise it is cleared.

is set if arithmetic overflow occurs due to the operation on X.

SBX

110010 ADDR

SUBTRACT FROM X REGISTER: x := x - 'hgq. The halfword operand from store is subtracted from the
contents of the 16 bit X register.

Condition Markers

N = s set to the true sign of the X register after the operation.
Z ~ issetifthe X register is zero after the operation, otherwise it is cleared.
"CA ~ issetif there isaborrow outof the most significant bit of the X register,
otherwise it is cleared.
OF — s set if arithmetic overflow occurs due to the operation on X.
CPX

) 5 6 - © s
11 0011 ADDR

COMPARE X REGISTER: formx - hg. The halfword operand from store is compared with the contents of
the 16 bit X register. The X register is unaffected by this instruction.

Condition Markers
N — issetif the X register is less than the 16 bit operand from store
Z - issetif the 16 bit operand from store is equal to the X register, otherwise it is
cleared.
CA - s set if thereisaborrow out of the most significant bit of the function unit as a result
of the comparison, otherwise it is cleared.
OF — is setif arithmetic overflow occurs as a result of the comparison.
NX
] 5 6 15
110100 ADDR

AND X REGISTER: x := x A hg. The halfword operand from store is used to form the logical AND function
with the contents of the X register. The result is replaced in the X register.

Condition Markers

N — isset to the sign of the 16 bit X register after the operation.
Z — issetif Xis zero after the operation otherwise it is cleared.
CA ~ notaffected.

OF — not dffected.

25

110101 ADDR

MULTIPLY X: x := x » hg. The halfword operand from store (multiplier) and the contents of the 16 bit X register
(multiplicand) are multiplied together to form a 32 bit product. The result (in the X register) is the least significant
16 bits of the true product.

Condition Markers

N
VA
cA
OF

DX

is set to the sign of the true product

is set if the result in the X register is zero, otherwise it is cleared.

not affected)

is set if significant bits are lost as a result of truncating the product from 32 to 16 bits.

110110 ADDR

DIVIDE X REGISTER: x := x+ hg. The contents of the 16 bit X register (Dividend) are divided by a halfword
operand from store (divisor) and the resultin X is the integer quotient. All remainders are discarded, the result
being rounded towards zero.

Condition Markers

N

is set to the sign of the quotient in X.

Z © is set if the quotient in X is zero otherwise it is cleared.
CA not affected.
OF is only set if the operand from store is zero or if the divident = -2'% and the
divisor = -1. In this case N, Z and X are undefined.
7.4 OPERATIONS ON Y AND Z REGISTERS

The following instructions are available: —

LDY
STY
ADY
SBY
HAY

LDZ
STZ
ADZ
SBZ
HAZ

26

LOAD Y REGISTER

STORE Y REGISTER

ADD Y REGISTER

SUBTRACT Y REGISTER

LOAD ADDRESS INTO Y REGISTER

LOAD Z REGISTER

STORE Z REGISTER

ADD Z REGISTER

SUBTRACT Z REG'.TER

LOAD ADDRESS iTO Z REGISTER

LDY

(1]

5

15

1

11000

‘ADDR

LOAD Y RFEGISTER: vy := hq. The 16 bit register Y is loaded with a halfword operand from store..

Condition Markers

Not affected.

STY

15

1

110 1.1

. ADDR

STORE Y REGISTER: hq :=vy. The content of the 16 bit Y rggister is stored at a halfword address.

6

15

Condition Markers
Not affected.
ADY
0 5
11160601

ADDR

ADD Y REGISTER: y :=y + hqg. The halfword operand from store is added to the contents of the 16 bit

15

Y register.
Condition Markers
Not affected
SBY
¢ 5
111010

ADDR

SUBTRACT Y REGISTER: y :=y - hq. The halfword operand from store is subtracted from the contents of the

16 bit Y register.

Condition Markers

Not affected

27

TN
HAY

o 5 6 15

011 000 . ADDR

LOAD HALFWORD ADDRESS INTO Y REGISTER: y := Q. The halfword operand address specified by the
instruction is loaded into Y. ' o

Condition Markers
Not affected
LDZ
0 5 6 15 ~
111100 ADDR
LOAD Z REGISTER: z:=hq. The 16 bit register Z is loaded with a halfword operand from store.
Condition Markers
Not affected
STZ
0 5 6 15
111111 ADDR
STORE Z REGISTER: hq := z. The content of the 16 bit Z register is stored at a halfword address.
Condition Markers
Not affected
ADZ
0 5 6 15
111101 ADDR
ADD 2Z REGISTER: z := z + hg. The halfword operand from store is added to the contents of the 16 bit Z
register. : : S
Condition Markers ‘
Not affected &

28

SBZ

0 . $. 6 - : 15

111110 ~ ADDR

SUBTRACT Z REGISTER: z := z - hq. The halfword operand from store is subtracted from the contents of the
16 bit Z register. ‘

Condition Markers
Not affected
HAZ
0 5 6 15
0t 1100 ADDR

LOAD HALFWORD ADDRESS INTO Z REGISTER: z := Q.. The halfword operand address specified by the
instruction is loaded into Z. ’

Condition Markers
Not affected

7.5 MULTIPLE LOAD AND STORE INSTRUCTIONS
Two instructions are available:—

STM - STORE MULTIPLE
LDM - LOAD MULTIPLE

9 registers take part in each of these instructions and the store layout is as below.

< FULLWORD
BM " ADDRESS (0)
BL
< Q+4
AM _
AL
” Q+8
Q+10
Y .
Q+12
4
- Q+14
E C
44— HALFWORD = 16 BITS —

29

N
ST™

011010 ADDR

STORE MULTIPLE: The displacement field of the instruction is scaled to provide a fullword address. The address
formed by instructions in formats A1—AB will be truncated to a fullword address. Register BM is stored at thts
fullword location followed by the registers shown above in successive halfword locations.

All registers are unaffected by the STORE MULTIPLE instruction.

Condition Markers
Not affected.
LDM | " ~
0 5 6 15
01 100 1 ADDR

LOAD MULTIPLE: The displacement field of the instructioh is scaled to provide a fullword address. The address
formed by instructions in formats A1—A5 will be truncated to a fullword address. Register BM is loaded from this
fullword location followed by the registers shown above in successive halfword locations.

Condition Markers

The Condition Markers,including FM, are loaded from the Q + 15 store location during LDM,
7.6 INDIRECT BRANCHES

Two instructions are available: —

BI — BRANCH INDIRECT N
BLI — BRANCH AND LINK INDIRECT
BI
0 5 6 A 15
011101 - ADDR
BRANCH INDIRECT: s := hq. A halfword address is formed as specified by the instruction. This is an operand
address formed in the same way as for any format A1—-A5 instruction. The contentsof this location is the branch
destination, and is loaded into the sequence control register (S).
Condition Markers
Not affected.
N

BLI

[} 5 6 : 15

o11110 ADDR

BRANCH AND LINK INDIRECT: z:=s s := hq; A halfword address is formed exactly as in Bl above. The
contents of the sequence control register S is transferred to Z before S is loaded with the branch destination
address. ’

This instruction is used for subroutine entry with the return link stored in Z.

Condition Markers

Not affected.

INSTRUCTIONS AVAILABLE IN FORMAT B

Two unconditional branch instructions only are available in this format:—

B — BRANCH |
BL - BRANCH AND LINK
0 s 6 15 Destination ADDress=5+2D
- 511 Halfwords Forwards
000001 D 512 Halfwords Backwards

(Signed integer -10 bits) ‘ N

BRANCH: s := Q. The sequence control register is incremented or decremented according to the displacement field
specified by the instruction. As explained in section 4 (b) the instruction provides unconditional branches relative
to the next instruction in sequence. The range of the branch is limited to 511 halfwords forwards and 512 halfwords
backwords by the 10 bits of instruction displacement field.

Condition Markers
Not affected.
BL
0 5 6 15
000010 b
™
BRANCH AND LINK: z:=s. This instruction performs the same function as B above, aid also the original value
of the sequence control register is placed in Z. This provides for subroutine entry and return.
Condition Markers
Not affected.
7N

32

9 INSTRUCTIONS AVAILABLE IN FORMAT L

These instructions are called literal instructions since where an operand is required it is specified
exactly by the instruction dlsplacement field. Some instructions depend on their displacement fields to further
define their function.

9.1 OPERATIONS ON THE 32 BIT ACCUMULATOR

The following instructions are available:—

LDL - LOAD LITERAL
ADL = — ADD LITERAL
SBL -~ SUBTRACT LITERAL
ML - MULTIPLY LITERAL
DL - DIVIDE LITERAL
NL — AND LITERAL
CPL -~ COMPARE LITERAL
LDL
1,2 7,8 15
00{100000] D

LOAD LITERAL: a:=D. The operand formed by the 8-bit displacement field is loaded into the least significant
byte of the accumulator. The most significant 3 bytes of the accumulator are cleared. As described in section 4.2 it
is thus possible to load numbers in the range 0—255 into the 32 bit accumulator.

Condition Markers
N - iscleared by the operation.
Z - is set if the result in the 32 bit accumulator is zero, otherwise it is cleared.
CA " — not affected.
OF = notaffected.
ADL
0 1,2 7,8 15
0 010 0O0 O 1 D

ADD LITERAL: a:=a+ D. The operand specified by the 8-bit displacement field is extended to 32 bits by most
significant zeros before the operation. This operand is then added to the contents of the 32 bit accumulator.

Condition Markers

N — " isset to the true sign of the result.

Z — s setif the result in the 32 bit accumulator is zero, otherwue it is cleared.

CA ~ issetif there is a carry out of the most significant bit of the 32 bit accumulator,
otherwise it is cleared.

OF — s set if arithmetic overflow occurs, otherwise it remains unchanged.

33

SBL

1,2 7,8 15

lo ol1 000 10} D

SUBTRACT LQTERAL: a := a - D. The operand specified by ihe 8-bit displacement field is extended to 32 bits
by most significant zeros before the operation. This operand is then subtracted from the contents of the 32 bit

accumulator.

Condition Markers

N — s set to the true sign of the result.

Z — s setif the result in the 32 bit accumulator is zero, otherwise it is cleared.

CA - i set if thereisaborrow outof the most significant bit of the 32 bit accumulator,
otherwise it is cleared. ‘

OF =~ is set if arithmetic overflow occurs, otherwise it remains unchanged.

CPL

00/{1t0O00 11 D

COMPARE LITERAL: forma- D. The operand specified by the instruction displacement field is extended to 32
bits by most significant zeros. This operand is then compared with the contents of the 32 bit accumulator. The
accumulator is unaffected by the instruction.

Condition Markers

N -

zZ -

cA -

OoF -

NL

is set if the 32 bit accumulator is less than the 32 bit literal operand, otherwise it is
cleared. '

is set if the 32 bit accumulator equals the 32 bit literal operand, otherwise it is
cleared. :

is set if there is aborrow outof the most significant bit of the function unit as a result of
the comparison, otherwise it is cleared.

is set if arithmetic overflow occurs, otherwise it remains unchanged.

o 1 2 7 8 18

00/t 00100 D

AND LITERAL: a :=a AD. The operand specified by the displacément field of the instruction is extended to 32 bits
by most significant zeros. This 32 bit operand is used to perform the logical AND function with the contents of the
32 bit accumulator. The result is placed in the accumulator.

Condition Markers

N -
Z -
CA -
OF -

is cleared by the instruction.

is set if the result in the accumulator is zero, otherwise it is cleared.
not affected. L

not affected.

7N

ML

00{10 0101 p

MULTIPLY LITERAL: a :=a « D. The 8-bit operand specified by the displacement field of the instruction and
the contents of the 32 bit accumulator are muitiplied together to form a 40 bit product. The result, in the accum-
ulator, is the least significant 32 bits of the true product.

Condition Markers
N — s set to the sign of the true 40 bit result.
Z — issetif the result in the 32 bit accumulator is zero, otherwise it is cleared.
CA — notaffected. i
OF - overflow is set if significant bits are lost in the truncation of the product.
DL
0 1 2 7 8 15
00j100 1 10 D

DIVIDE LITERAL: a:=a+ D b :=remainder. The contents of the 32 bit accumulator {dividend) are divided
by the 8-bit operand specified by the instruction displacement field. This 8-bit operand is extended to 16 bits
before the operation by most significant zeros. The result, in the accumulator, is the 32 bit integer quotient.
The result in B is the 16 bit remainder, sign extended to 32 bits. The sign of the remainder is always equal to
the sign of the dividend (see section 7.1).

Condition Markers

N~ isset to the signof the 32 bit quotient in the accumulator.
Z — issetif the quotient is zero, otherwwe it is cleared.
CA ~ . notaffected.
OF — overflow is set if the divisor is zero. The content of A, B Nand Z are then
undefined.
9.2 LITERAL OPERATIONS ON THE X REGISTER

The following instructions are available:—

LDXL — LOAD X LITERAL

ADXL — ADDXLITERAL

SBXL -~ SUBTRACT X LITERAL

MXL ~ MULTIPLY X LITERAL

DXL - DIVIDE X LITERAL

NXL -~ AND X LITERAL

CPXL — COMPARE X LITERAL

LDXL
12 7 8 15
00/1 10000 D

35

LOAD X LITERAL: x := D. The operand specified by the 8-bit displacement field is extended to halfword length
{16 bits) by most significant zeros. This 16 bit operand is loaded into the 16.bit X register.

Condition Markers

N - iscleared by the instruction.
Z — issetif the X register is made zero by the operation, otherwise it is cleared.
CA ~ notaffected.
OF — notaffected.
ADXL
0 1 2 7 8 15
0 0Oj1t 1 00 0 1 D

ADD X LITERAL: x := x + D. The operand specified by the 8-bit displacg_ment field is extended to 16 bits by
most significant zeros. This 16 bit operand is then added to the contents of the 16 bit X register,

Condition Markers

N — s set to the true sign of the result.
Z — issetif the result in the X register is zero, otherwise it is cleared.
CA — issetif there is a carry out of the most significant bit of the X register,
otherwise it is cleared.
OF — issetif arithmetic overflow occurs due to the operation in X,
SBXL
01 2 7 8 15
0 0j11T00T10 D

SUBTRACT X LITERAL: x := x - D. The operand specified by the 8 bit displacement field is extended to
16bits by most significant zeros. This 16 bit operand is then subtracted from the contents of the 16 bit X

register.

Condition Markers
N — s set to the true sign of the result.
Z — issetif the result in the X register is zero, otherwise it is cleared.
CA - isset if there is aborrow out of the most significant bit of the X register, otherwise it is
cleared.
OF — s set if arithmetic overflow occurs due to the operation in X.
MXL
01 2 7 8 15
0 0/110101 D

MULTIPLY X LITERAL: x := x « D. The operand specified by the displacement field of the instruction and the
contents of the 16 bit X register are multiplied together to form a 24 bit product. The result, in X, is the least
significant 16 bits of this 24 bit product.

36

Condition Marker
N~ isset to the sign of the true 24 bit product.
Z - issetif the result in the X register is zero, otherwise it is cleared.
CA — notaffected.
OF = -~ s setif significant bits are lost in the truncation fr"om 24 to 16 bits.
DXL
0 1 2 7 8 15
00/t 10110 D

DIVIDE X LITERAL: x := x+ D ‘The contents of the 16 bct X register {dividend) are divided by the 8 bit operand
(divisor) specified by the instruction.displacement field. This 8 bit operand is extended to 16 bits before the operation
by most significant zeros. The result, in X, is the true integer quotient. Remainders are discarded, the result being
rounded towards zero. -

Condition Markers

N — s set to the sign of the 16 bit quotient in the X register.

Z - issetif the result in the X register is zero, otherwise it is cleared.

CA - notaffected.

OF - isset if the divisor is zero. The contents of N, Z and X are then undefined.

NXL

0 1 2 7 8 15
00j110100 D

AND X LITERAL: x := x A D. The operand specified by the 8 bit displacement field is extended to 186 bits by
most significent zeros. This 16 bit operand is used to form the logical AND function with the contents of the
16 bit X register. The result is placed in the X register.

Condition Markers

N — iscleared by the operation. :

Z — issetif the result in the X register is zero, otherwise it is cleared.

CA ~ notaffected

OF — not affected.

CPXL

01 2 7 8 15
0011001 1] D

COMPARE X LITERAL: form x - D. The operand specified by the 8 bit displacement field is extended to 16 bits by
most significant zeros. This 16 bit operand is then compared with the 16 bit content of the X register. The X
register is unaffected by the operation.

Condition Markers

N — issetif the 16 bit X register is less than the 16 bit literal operand, otherwise it is cleared.

Z — issetif the 16 bit X register equals the 16 bit literal operand, otherwise it is cleared.

CA — issetif thereisaborrowoutofthe most significant bit of the function unit as a result of
‘ the comparison, otherwise it is cleared.

OF —~ s set if arithmatic overflow occurs.

37

9.3 LITERAL OPERATIONS ON THE Y AN D Z REGISTERS

The following instructions are available:—

LDYL -~ - LOAD Y-LITERAL
ADYL — ADDY LITERAL
SBYL — SUBTRACTY LITERAL
CPYL — COMPAREY LITERAL
LDZL - LOAD Z LITERAL
ADZL -~ ADDZLITERAL
SBZL ~ SUBTRACT Z LITERAL
CPZL - COMPARE Z LITERAL
N.B. . Before all the following operations the 8 bit displacement field of the instruction is extend to

16 bits by most significant zeros. It is then used as a 16 bit literal operand.

LDYL

00it1 1000 D

LOAD Y LITERAL: y :=D. The literal operand is loaded into the 16 bit Y register.

Condition Markers
Not affected.
ADYL
o 1 2 7 8 15
0 0j]1 11001 D

ADD Y LITERAL: y :=y + D. The literal operand is added to the contents of the 16 Y register.

Condition Markers
Not affected.
SBYL
0 1 2 7 8 15
00/171 1010 D

SUBTRACT Y LITERAL: vy :=y - D. The literal operand is subtracted from the contents of the 16 bitY
register.

Condition Markers

Not affected.

38

CPYL

6 1 2 7 8 15

00011011 D

COMPARE Y LITERAL: form y- D. The literal operand is compared with the contents of the Y register.
Y is unaffected by this operation.

Condition Markers
N - issetif Yis less than the literal operand.
Z - issetif the result of the operation is zero, otherwise it is cleared. »
CA — issetif thereisaborrowout of the most significant bit of the function unitas a
result of the comparison, otherwise it is cleared.
OF — s set if arithmetic overflow occurs.
LDZL
0o 1 2 7 8 15
0 0f1 171 111 D

LOAD Z LITERAL: z := D. The literal operand is loaded into the 16 bit Z register.

Condition Markers
Not affected. .
ADZL
01 2 7 8 15
0 0j1 11101 D

ADD Z LITERAL: z:=z+D. The literal operand is added to the contents of the 16 bit Z register.

Condition Markers
Not affected.
SBZL
0 1 2 7 8 15
0o0jt 11110 D

SUBTRACT Z LITERAL: z := z - D. The literal operand is subtracted from the contents of the 16 bit Z
register. :

Condition Markers

Not affected.

39

CPZL

COMPARE Z LITERAL: form z - D. The literal operand is compared with the contents of the Z register.
Z is unaffected by this operation.

Condition Markers

N — issetif Zis less than the literal operand.

Z — - is set if the result of the operation is zero, otherwise it is cleared.

CA - is set if thereis a borrow out ofthe most significant bit of the function unif as a
* result of the comparison, otherwise it is cleared

OF - is set if arithmetic overflow occurs. -

9.4 CONDITION BRANCHIN STRUCTIONS IN FORMAT L
The following instructions are available:—

BN - BRANCH IF NEGATIVE
BNN — BRANCH IF NON NEGATIVE
BZ — BRANCH IF ZERO

BNZ —~ BRANCH IF NON ZERO

BP — BRANCH POSITIVE

BNP -~ BRANCH IF NON POSITIVE

BOF - BRANCH IF OVERFLOW
BNCA -~ BRANCH IF NO CARRY
BPAR -~ BRANCH ON ODD PARITY

For these instructions the branch destination is formed by scaling the literal displacement (D) for
halfword (i.e. left shifting it one place), sign extending it to 16 bits and then adding it to the current contents of
the sequence control register (S).

Branches of 127 instructions ahead or 128 instructions behind the next instruction in sequence ~~
may be performed (see section 4.3).

If a branch is taken then
S=S+2D whereD= +127....-128
otherwise for a branch not taken the next instruction in sequence is obeyed.

BN

0o 1 2 ’ 7 8 is

0 0j1 01000 D 8bits D=+127...-128

BRANCH IF NEGATIVE: if N thens:= Q. If the negative condition marker is true the branch is taken.
Condition Markers

Not affected.

40

BNN

0 0/101001 D

BRANCH IF NON NEGATIVE: if N then s := Q. If the negative condition marker is false the branch is taken.
Condition Markers
Not affected.

BZ

o 1 2 7 8 15

0o 0/10 1010 D

BRANCH IF ZERO: if Zthen s:=0Q. If the zero condition marker is true the branch is taken.

Condition Markers
Not affected.
BNZ
01 2 7 8 15
00j1 01011 D

BRANCH IF NON ZERO: if Z then's := Q. If the zero condition marker is false the branch is taken.

Condition Markers
Not affected.
BP
01 2 7 8 15
00{10 1 100 D

-

BRANCH IF POSITIVE: if N A Z then's := Q. If the zero condition marker AND the negative marker are false
the branch is taken.

Condition Markers

Not affected.

41

BNP

1,2 7,8 18
00j10 1101 D

BRANCH 1F NON POSITIVE: if N v Z then s := Q. If the zero condition marker OR the negative marker are
true then the branch is taken.

Condition Markers
Not affected.
BOF
01 2 7. 8 15
00|/1 01110 D

BRANCH IF OVERFLOW: if OF then <OF :=0 s:=Q3 If the overflow condition marker (OF) is true
then the branch is taken. .

Condition Markers

N - notaffected.

Z -~ notadffected.

CA - not affected.

OF -~ resets to zero.

BNCA

0t 2 7 8 15
co0oj1T01111 D

BRANCH IF NO CARRY: if CA thens := Q. If the carry condition marker (CA) is false then the branch is
taken.

Condition Markers
Not affected. |
BPAR
0o 1 2 ' 7 8 15
00{01 1000 D

BRANCH ON ODD PARITY: The least significant byte of the accumulator is examined and if it has odd parity
the branch is taken.The parity of the least significant byte of A is defined as odd, if the number of bits which are set to 1
are odd. i

Condition Markers

Not affected.
42

9.5 SHIFT INSTRUCTIONS

The following instructions are available:—

SHIFT LITERAL
SHIFT INDEXED

SHIFT LITERAL

00/01 1001 D

SHIFT LITERAL: D Defines Shift. The type, direction and number of places to be shifted are further defined by
the displacement field of the instruction. The 8 bit literal operand directly controls the shift operation.

SHIFT INDEXED

SHIFT INDEXED:D + x Defines Shift. The type, direction and number of places to be shifted are further defined by
the displacement field of the instruction added to the contents of the X register, The least significant byte of the resuit
controls the shift operation. :

The 8 bit field controlling the shift instruction is structured as follows:—

8 10 11 15

M N

The 3 bit field M defines eight possible types of shift operation, and the 5 bit field N defines the
number of places to be shifted.

In the case of the indexed shifts (SHX instruction) both the number and type of shift may be

modified by the value in the X register. An effective subtraction of X may be achieved if the value of X is negatlve
since the indexing involves a full 16 bit addmon

43

The following types of shift are available:—

M MNEMONIC ' NAME

000 | SBAR,SBRX; SHIFT EXTENDED ACCUMULATOR (B AND A) RIGHT ARITHMETICAL
001 | SBAL,SBLX| SHIFT EXTENDED ACCUMULATOR LEFT ARITHMETICAL

010 | SR, SRX | SHIFT 32 BIT ACCUMULATOR (A) RIGHT ARITHMETICAL

011 |SL, SLX | SHIFT 32 BIT ACCUMULATOR (A) LEFT ARITHMETICAL

100 | SRL, ,SRLX| SHIFT 32 BIT ACCUMULATOR (A) RIGHT LOGICAL

101 | SLC, SLCX| SHIFT 32 BIT ACCUMULATOR (A) LEFT CIRCULAR

110 | SXR, SXRX| SHIFT X REGISTER RIGHT ARITHMETICAL

111 | SXL, SXLX| SHIFT X REGISTER LEFT

| EVEN = RIGHT SHIFT
ODD = LEFT SHIFT

SBAR ,SBRX

(1] 7 8 10 11 15

SHL/SHX 000 N

— T

SHIFT BA RIGHT ARITHMETICAL: The 64 bit accumulator is shifted arithmeticaily right a number of places
defined by the N field. N may have the value T—31 and the number of places shifted will be 32—N. If the value

of N=0 is used the effect will be to set the condition markers N and Z as below leaving the accumulator unchanged.
The most significant bit of the extended accumutator (sign bit) is replicated as the shift is performed.

Condition Markers.
N — s set to the sign of the 64 bii extended accumulator after the shift
Z — s setif as a result of the shift the 64 bit accumulator becomes zero, otherwise it is
cleared.

CA — - notaffected.

' OF — not affected.

SBAL,SBLX
0 7 8 10 11 15

SHL/SHX 0o 01 N

SHIFT BA LEFT ARITHMETICAL: The 64 bit accumulator is shifted left a number of places defined by the
N field. N may have the value 0—31 and the number of placed shifted will equal N. Zeros are input at the least
significant bit of the extended accumulator as it is shifted. If a value of N=0 is used the effect will be to set the
condition markers N and Z as below leaving all other registers unchanged.

Condition Markers
N — s set to the sign of the 64 bit extended accumulator after the shift.
Z — s setif as aresult of the shift the 64 bit accumulator becomes zero,
otherwise it is cleared. :
CA ~ not affected.
OF — s set if in the course of the shift the sign of the exténded accumulator changes.

44

SR,SRX

0 ‘ 7 8 10 11 15

SHL/SHX = {010 N

SHIFT A'RIGHT ARITHMETICAL: The 32 bit accumulator is shifted right arithmetically a number of places
defined by the N.field. N may have the value 1—31 and the number of places shifted will be 32—N. If a value of
N=0 is used the effect is to set condition markers N and Z as below leaving the accumulator unchanged. The most
significant bit of the accumulator is replicated as the shift is performed.

Condition Markers

N . — isset to the sign of the 32 bit accumulator after the shift.
Z — issetif as aresult of the shift the 32 bit accumulator is zero, otherwise it is cleared.
CA - notaffected. -
OF-- — - notaffected. -
SL,SLX
0 78 10 11 15

SHL/SHX 01 1 N

SHIFT A LEFT ARITHMETICAL: The 32 bit accumulator is shifted left a number of places defined by the
N field. N may have the value 0—31 and the number of places shifted will equal N. Zeros are input at the least
significant bit of the accumulator as it is shifted.

if the value N=0 is used the effect will be to set the condition markers as below leaving the
accumulator unchanged. '

Condition Markers
N~ isset to the sign of the 32 bit accumulator after the shift.
Z - issetif as aresult of the shift the 32 bit accumulator becomes zero,
otherwise it is cleared. :
CA - notaffected.
OF — issetifin the course of the shift the sign of the extended accumulator changes.
SRL,SRLX -
o » 7 8 1om 15

SHL/SHX 100 N

SHIFT RIGHT LOGICAL: The 32 bit accumulator is shifted logically a number of places defined by the N field.

N may have the value 1—-31 and the number of places shifted will be 32—N. If the value N=0 is used the effect is to
set the condition markers as below leaving all other registers unchanged. Zeros are input at the most significant bit
of the 32 bit accumulator as it is shifted. '

Condition Markers

N - isset to the sign of the 32 bit accumulator after the shift.

Z — issetif the 32 bit accumulator becomes zero as a result of the shift. otherwise it is cleared.
OF — not affected. '
CA — not affected.

45

SLC,SLCX

(1] 7 8 10 11 15

SHL/SHX 101 N

SHIFT A LEFT CIRCULAR: The 32 bit accumulator is shifted left circular a number of places defined by the
N field. N-may have the value 0—31 and the number of places shifted will equal N. Bits shifted out from the
most significant bit of-the 32. bit accumulator are input at the least significant bit as the shift proceeds as shown

A ' A
BEFORE 0 M L 31
SHIFT 0123456 15 |16,17,18,19,20,21,22, —————— 31
SHIFT 6
ACE
PLACES Ay AL
6,789 2 |2 — 31,0,1,2.34,5
AFTER
SHIFT :
> ' >

other registers

SXR,SXRX

If the value of N=0 is used the effect is to set the condition markers N and Z as below leaving all
unchanged.

Condition Markers
N ~ issetto the sign of the 32 bit accumulator after the shift (bit 6 in the example).
Z — s set if after the shift the accumulator is zero.
OF — not affected.
CA - notaffected.
) 7 8 10 11 15
SHL/SHX 110 N

SHIFT X RIGHT ARITHMETIC (16 < N'<<31). The 16 bit X register is shifted right arithmetically a.number of

places defined

by the N field. N may have the value 16—31 and the number of places shifted will equal 32—N.

Use of a value of N in the range 0—15 will lead to an undefined instruction trap. In this case all registers are
unchanged. The most significant bit of the X register is replicated as the shift is performed.

46

Condition Markers

N — s set to the sign of the X register after the shift.

Z - s setifas aresult of the shift the X register becomes zero, otherwise it remains
~_ unchanged. .

CA - . notaffected.

OF - notaffected.

SXL,SXLX

o R T 1011 1s

SHL/SHX 111 N

SHIFT X LEFT ARITHMETIC (0 <N < 15): The 16 bit X register is shifted left a number of places defined by
the N field. N may have the value 0—15 and the number of places shifted will be equal to N. Use of a value of N in
the range 16—31 will lead to undefined instruction trap. In this case all registers are unchanged. If a value of N=0
is used the effect will be to set condition markers as below leaving all other registers unchanged.

Condition Markers

N — isset to the sign of the X register after the shift.

Z - issetif as aresult of the shift the X register becomes zero, otherwise it remains
unchanged.

CA =~ notaffected.

OF — notaffected.

9.6 BIT MANIPULATION INSTRUCTIONS
The following instruction types are available:

BITL -~ BIT OPERATION LITERAL
BITX — BIT OPERATION INDEXED

These instructions perform operations on a selected bit of the accumulator. The least significant
16 bits (A,) of the 32 bit accumulator only are affected by these instructions.

BITL

0 0j010110 D

BIT OPERATION LITERAL: D defines OP. The operation to be performed and the bit selected are defined by the
displacement field of the instruction. The 8 bit literal operand specnfles the operation to be performed.

BITX

00010101 D

BIT OPERATION INDEXED: D +x defines OP. The operation to be performed and the bit selected are defined
by the displacement field of the instruction added to the contents of the X register. The least significant byte of the
result controls the operation. The operation type and the selected bit number may be modified by the value in the
X register. If the OP field is modified, undefined operation may result. The indexing with X should therefore only be
used to modify the bit number N.

The 8 bit field controlling the bit manipulation operation is structured as follows:—
8 11 12 15

oP N

The 4 bit OP field defines the operation to be performed.

47

The 4 bit N field defines the bit of the accumulator (A) that is selected for the operation. The
bits of A| are numbered 0 at the most significant end to 15 at the least significant end.

The following bit manipulation instructions are specified:—

TSTB,TSTX

TGLB,TGLX

OP |MNEMONIC NAME
0 | TSTB,TSTX TEST BIT
9 TGLB,TGLX TOGGLE BIT
10 |PLCB,PLCX PLACE BIT
11 |SETB,SETX SET BIT
14 jCLRB,CLRX » CLEAR BIT
0 7.8 1 12 15
BITL/BITX {00-0-0 0 N
TEST BIT: The bit of the accumulator (AL) specified by the N field is tested‘.
Condition Markers
N not affected.
z is set if the bit tested is zero, otherwise it is cleared.
CA not affected.
OF not affected.
0 7.8 11 12 15
BITL/BITX 1001 N

TOGGLE BIT: The bit of the accumulator (AL) specified by the N field is toggled, i.e. if the initial value was O
the new value is 1 and if the initial value was 1 the new value is O,

PLCB,PLCX

Condition Markers

N not affected. ’

zZ is set if the least significant 16 bits of the accumulator (4) become zero as a result

of the operation otherwise it is cleared.
CcA not affected.
OF not affected.
0 78 11 12 15
BITL/BITX 1010 N

PLACE BIT: The accumulator (AL) is loaded with a single bit specified by the N field. The specified bit is

set to a 1 whilst the remaining bits are set to zero. '

48

e.g.

0) 7.8 o125
INSTRUCTION . BITL opP N
CODE 0001011 0|1 010(1100
N=12 :
Am . AL
RESULT IN
ACCUMULATOR UNCHANGED 0000000000001000
Condition Markers
N - not affected. ; : .
Z — will be cleared by this instruction since the result can never be zero.
CA — notaffected.
OF — notaffected.
SETB,SETX
0 7 8 S 1112 15
BITL/BITX 101 1 N

SET BIT: The bit of the accumulator (A,) specified by the N field is set to a 1 whilst the remaining bits are
unchanged.

Condition Markers

N - notaffected. ' ,

Z — iscleared as a result of the operation since the result in A| can never be zero.
CA - notaffected.
OF — not affected.
CLRB,CLRX
0 7.8 1112 15
BITL/BITX 1110 N

CLEAR BIT: The bit of the accumulator AL specified by the N field is set to O whilst the remaining bits are
unchanged.

Condition Markers

N~ notaffected.

Z — issetif as aresult of the operation the least significant 16 bits of the accumulator
become zero, otherwise it is cleared.

CA —~ not affected.

OF — notadffected.

49

9.7 STRING MANIPULATION INSTRUCTIONS

These instructions operate on strings of bytes or halfwords in store. One string of bytes/halfwords
has it position defined by the Y register and its length defined by the X register. The second string is defined by .
Z and its length is either defined by X or is fixed at 256 bytes depending on the instruction.

In general X is counted towards zero as each byte/halfword. is operated on. When X = 0 the
instruction terminates. At the end of each operation a test is made to determine the presence of any interrupt
that may require attention. When the instruction is restaited {possibly after servicing an interrupt) the next
operation in sequence is performed untii X = 0.

A general flow chart for string manipulation instruction is shown below.

START INST/
RETURN FROM

INTERRUPT
, END
INSTRUCTION
X=X+1
PERFORM
———.—’ ‘—.—.
OPERATION
NO INTERRUPT YES SERVICE
-— PENDING INTERRUPT -

?

50

MBS

01 2

7

8

15

00jf100 11

|

0000OOOO

b (y+x) :=b (z+x)

MOVE BYTE STRING: The string of bytes defined by register Z is copied into the string defined by register Y.
The X register specifies the number of bytes to be moved. If X is positive Y and Z must contain the address of the
first byte in each string and the first byte moved is the last byte in each string. If X is initially negative Y and Z
must contain the address of the last byte in each string and the first byte moved is the first byte in each string.
Thus the final position of the string may in either case overlap its original position.

If for example X = +8

Y = address p
Z = address n
REGISTER Z
l > n n+1
n+2 n+3
n+4 n+5
n+6 * n+7
MOVED
| LAST
MOVED
REGISTER Y | FIRST
p+2 p+3
p+4 p+5
p+6 ¥ p+7

CONTENTS OF ADDRESSES
n— n+7 COPIED INTO
ADDRESSES p — p + 7

Initially when X = 8 a byte from address n + 7 will be moved into address p + 7 and so on until,
after moving the byte from address n to address p , X becomes equal to zero and the instruction terminates.

Condition Mafkers

N - iscleared.

VA — is set.

CA — notaffected.
OF — not affected.

51

CPBS

o 1 2 7. 8 15

0ool/10011 101000000

Form b (z+x) -b (y+x) Term. if £
COMPARE BYTE STRINGS: The bytesto be operated on are defined by Y, Z and X as in the instruction MBS.
In this case the two strings of bytes are compared with each other. The comparison forms the byte defined by
z + x minus the byte defined by y + x. The instruction terminates when X=0 or when two bytes are compared
and found to be not equal.

Condition Markers
N — s cleared by the instruction if it runs to completion (i.e. X=0) otherwise it will
be set to the sign of the result of the last comparison.
Z s set by the instruction if it runs to completion (i.e. X=0) otherwise it is cleared.
CA - not affected. '
OF — notaffected.
TRBS
0 1 2 7 8 15

0010011 1/10000000

b (y+x) :=b (z+b [y+x])

TRANSLATE BYTE STRING: There is a 256 byte translation table beginning at address Z. The string of X bytes,
beginning at address Y is examined one byte at a time. Each byte examined is used as an index to select one of the
256 entries in the translation table, so giving the translation for the byte examined. The translation is now written

into the place of the byte just examined, so that by the completion of the instruction, every byte in the string has

been replaced by its translation.

BYTES TO BE TRANSLATION RESULT
TRANSLATED TABLE
y z Yy
y+1 B z41 : y+1 U
y+2 y+2
. z+B U N
z+C v
y+x B E y+x U
c .
Condition Markers
N - iscleared.
VA - is set.
CA - not affected.
OF - not affected.

52

SCBS

0o 1 2 : 7 8 15

00{1t 0011111000000

Formb (z+b [y+x])A ks byte of AL Term. when Result = ‘0’or when x = ‘0’

SCAN BYTE STRING: There is a 256 byte table beginning at address Z. The string of X bytes beginning at
address Y is examined one byte at a time. Each byte examined is used as an index to select one of the 256
entries in the table, just as for TRBS. The logical AND of the byte from the table and the least significant
byte of the accumulator is formed. If the result of this operationis non-zero, the instruction terminates at
once, otherwise the instruction continues until the whole string of X bytes has been examined.

‘ This instruction is usually employed to scan a string of characters Inoking for characters from a
specified subset — e.g. any digit. The AND function with the accumulator enables 8 essentially independent
sets to be specified using different bit positions within a single 256 byte table. The ¢ :cumuiator usually contains
only a single bit.

Condition Markers
N -~ iscleared.
Z - isset by the instruction if it runs to completion, otherwise it is cleared.
CA ~ notaffected.
OF — not affected.
MHS
01 2 7 8 15

00/t 1011 100000000

h { y+2x) :=h (2+2x)
MOVE HALFWORD STRING: The displacement field of this instruction must be zero.

The operation is as for the instruction MBS except that halfwords are moved.

The X register specifies the number of halfwords to be moved and will be scaled to produce
halfword addresses.

Condi’tion Markers
N - is cleared.
Z - is set.
CA - notaffected.
OF - not affected. _
‘ 9.8 MISCELLANEOUS INSTRUCTIONS IN FORMAT L

. The following instructions come into this group:—

RK — READKEYS

HRK — HALT READ KEYS

SFN — SET FULL NUCLEUS

PEC — PRIORITY ENCODE
"SEXT -~ SIGN EXTEND

53

RK

o 1 2 7 8 15

00[/010010[000000°00

READ KEYS: Information set on the data keys of the CMU front panel is loaded into the least significant 16 bits
of the accumulator (A). The resultin A; will be sign extended into the most significant 16 bits of the accumulator
(AM). If the CMU is in ‘AUTO’ mode the 32 bit accumulator will be cleared regardless of the setting of the keys.

Condition Markers
N — s set to the sign of the 32 bit accumulator after the operation.
Z — issetif the 32 bit accumulator becomes zero as a result of the operation, otherwise
it is cleared.
CA - notaffected.
OF — notaffected.
HRK
0o 1 2 7 8 . 15

00/j010010[(000O0CO0O0CO0 1

HALT READ KEYS: If the machine is in TEST or NORMAL mode it will halt before obeying this instruction.:
Subsequent operation of the START/STOP key on the CMU causes the Read Keys instruction to be obeyed.

With the CMU in "AUTO’ mode the effect of this instruction is as Read Keys.

Condition Markers
N — isset to the sign of the 32 bit accumulator after the operation.
Z — issetif the 32 bit accumulator becomes zero as a result of the operation, otherwise
it is cleared.
CA —~ notaffected.
OF — notaffected..
SFN
° 1 2 7 8 15

00/010010{000000 10

SET FULL NUCLEUS: This instruction switches the computer from Basic Test Mode to Full Nucleus

Modes under certain circumstances. It is used to facilitate the loading of programs which will eventually run under
full nucleus operation. For the instruction to operate as described the central processor must be in basic test mode
with the basic test switch on the front panelin the UP position or Key Switch set to-Normal. Under all other
conditions the SFN instruction has the same effect as Read Keys.

Condition Markers

N — isset to the sign of the 32 bit accumulator after the operation.

Z — issetif the 32 bit accumulator becomes zero as a result of the operation, otherwise
it is cleared.

CA - notaffected.

OF — not affected.

PEC

0 1 2 7 8 15

0 0/j0111 10/000O00O0O00O0

PRIORITY ENCODE: The least significant 16 bits of the accumulator (AL) are scanned from the most significant
bit position to the least significant bit position until the first bit reset to 0 is found. The number of the bit thus
found is placed in the X register. The bits of AL are numbered 0 at the most significant end to 15 at the least
significant end, If AL contains all ones then the number 15 is placed in X as it would be if bit 15 only were set to
zero. : :

Condition Markers
Not affected.

SEXT

01 2 7 8 ‘ 15

00j171 11 00({0000O0O0COO

SIGN EXTEND: The sign of the 32 bit accumulator (i.e. the most significant bit) is copied throughout the
accumutator extension (B).

Condition Markers

N — s set to the sign of the extended accumulator.

VA - is set if the extended accumulator becomes zero as a result of the operation,
otherwise it is cleared.

CA - notaffected.

OF -~ notaffected.

55

10. INSTRUCTIONS AVAILABLE IN FORMAT RR

These instructions do not require an operand from store, all operations taking place between
registers. The operations are defined by the instruction and take place between a source register (G2) and a
destination register (G1) both specified by the instruction. These registers may be any two of the following:—

O,A,B, X, L,S,Y,2Z

where O is a non-existent 16 bit register containing zeros. If O is used as a destination register the result of the
operation is not recorded but the condition markers are affected. The same register may be both source and
destination.

if both G1 and G2 are 16 bit registers then 16 bit operations are performed. *

If both G1 and G2 are 32 bit registers then 32 bit operations are performed.

If G1 is a 16 bit register and G2 a 32 bit register then 16 bit operations are perférmed between
G1 and the least significant 16 bits of G2.

If G1 is a 32 bit register and G2 is a 16 bit register then G2 is sign extended to 32 bits and 32
bit operations are performed.)

Where G1=S these instructions are effectively branches and with the exception of the load
instructions are relative to the next instruction in sequence as for normal branches.

Where G2=S the value of S used for the operation will be that pointing to the next instruction
in sequence.

The following instructions are available:—

RLD — REGISTER LOAD

RAD — REGISTER ADD

RSB — REGISTER SUBTRACT

RN — REGISTER AND

RCP — REGISTER COMPARE

RNA — REGISTER NEGATE AND ADD

RO - REGISTER OR

RX — ° REGISTER EXCLUSIVE OR

RADC - REGISTER ADD PLUS CARRY

RSBC - REGISTER SUBTRACT MINUS CARRY

RADI - REGISTER ADD PLUS 1

RSBI — REGISTER SUBTRACT MINUS 1

Ri — . REGISTER INVERT

RLD

0 5°6 9 10 12 13 15
0 00 000|717 00 O} G1 G2

REGISTER LOAD: gt :=g2. The source register specified is loaded into the destination register.

Condition Markers

N — - s set to the sign of the destination register after the operation.
Z — s set if the destination register becomes zero as a result of the operation,
otherwise it is cleared.
CA — notaffected.
56 OF - not affected.

RAD

/] 5 6 9 10 12 13 15

000000100 1| GI G2

REGISTER ADD: g1 :=g1 +g2. The source register specified is added to the destination register and the result
placed in the destination register. .

Condition Markers

N — s set to the sign of the result.

VA - is set if the destination register becomes zero as a result of the operation, otherwise
it is cleared. ;

CA - issetif there is a carry out of the most significant bit of the result.

OF -

RSB

is set if arithmetic overflow occurs.

0 5 6 9 10 12 13 15-

000O0O0OO|1T0 10 G1 G2

REGISTER SUBTRACT: g1 := g1 ~ g2. The source register specified is subtracted from the destination regnster
and the result placed in the destination register.

Condition Markers

N . — isset to the sign of the result.

Z ~ issetif the destination register becomes zero as a result of the operation, otherwise
it is cleared.

CA — issetif thereisa borrow outofthemost significant bit of the result.

OF -~ s set if arithmetic overflow occurs.

RN

) s 6 9 10 12 13 15

0000007110 0f GI1 G2

REGISTER AND: g1 := g1 A g2. The source and destmanon registers specified perform the logical AND function
the result placed in the destination register.

Condition Markers

N — s set to the sign of the destination register.

Z -~ issetifthe destination register becomes zero as a result of the operation, otherwise
’ it is cleared. .

CA — notaffected.

OF — not affected.

57

RO

0 56 9 10 - 12 13 15

0000O0O|1T1T 01 G1 G2

REGISTER OR: g1 :=g1 V g2. The source and destination registers specified perform the logical OR function
the result placed in the destination register.

RCP

Condition Markers

N
Z

CA

or

|

is set to the sign of the destination register.
is set if the destination register becomes zero as a result of the operation, otherwise
it is cleared.

not affected.

not affected.
0 5 6 9 10 12 13 15
00000O0O0/1 01 1 Gt G2

REGISTER COMPARE: form g1 - g2. The source register specified is compared with the destination register
leaving ail registers unchanged.

RNA

Condition Markers

N
VA
CA

OF

is set if the destination register is less than the source register.

is set if the two registers being compared are equal, otherwise it is cleared.

is set if the result of the comparison producesaborrow out of the most significant
bit of the function unit, otherwise it is cleared:

is set if arithmetic overflow occurs as a result of the comparison.

0 5 6 9 10 12 13 15

0 000000100 G G2

REGISTER NEGATE AND ADD: g1 := g2 - g1. The destination register specified is subtracted from the source
register and the result placed in the destination register.

58

Condition Markers

N~ s setto the sign of the result.

Z — _isset if the destination register becomes zero as a result of the operation; otherwise
it is cleared.

CA —~ issetif thereisaborrowoutofthe most significant bit of the result.

OF -

is set if arithmetic overflow occurs.

RX

L] 5 6 9 10 1213 15

0000001 110 G1 G2

REGISTER EXCLUSIVE OR: g1:=g1¥ g2. The source register specified and the destination register perform
the logical ‘EXCLUSIVE OR’ function the result being placed in the destination register.

Condition Markers

N — s set to the sign of the destination register.

Z — s set if the destination register becomes zero as a result of the operation, otherwise

it is cleared.
CA — notaffected.
OF — not affected.
RADC

) 5 6 9 10 12 13 15
00O0O0O0O0OI0OO0O0 1 G1 G2

REGISTER ADD PLUS CARRY: g1 :=g1 + g2 + CA. The source register specified is added to the destination register
together with the contents of the CARRY condition marker.

Condition Markers

N — s set to'the sign of the result.
Z — s set if the destination register becomes zero as a result of the operation, otherwise
it is cleared.
CA ~ is setif there is a carry out of the most significant bit of the result.
OF — s set if arithmetic overflow occurs.
RSBC

0 5 6 9 10 1213 1s
0000000010 G1 G2

REGISTER SUBTRACT MINUS‘ CARRY: g1 :=g1 -g2 - CA. The source register is subtracted from the destination
register. The contents of the CARRY condition marker is also subtracted. from the destination register.

Condition Markers

N — s set to the sign of the result.

Z — s set if the destination register becomes zero as a result of the operation, otherwise
it is cleared.

CA — s set if there is aborrow out of the most significant bit of the result.

OF — s set if arithmetic overflow occurs.

59

RADI

o 5 6 9 10 1213 15

0 0000 0j0101 Gt G2

B

REGISTER ADD PLUS ONE: g1 :=g1+g2+ 1. The source specified is added to the destination reglster The
integer 1 is also added to the destination register.

. Condition Markers
N =~ isset to the sign of the result. :
Z — issetif the destination register becomes zero as a result of the operation, otherwise
it is cleared.
CA — issetif there is a carry out of the most significant bit of the result.
OF — - s set if arithmetic overflow occurs.
RSBI
) 5 6 9 10 1213 15
100000 0/01 10/ &t G2

REGISTER SUBTRACT MINUS ONE: g1 := g1 - g2 - 1. The source register specified is subtracted from the
destination register. The integer 1 is also subtracted from the destination register.

Condition Markers

N — s set to the sign of the result.
Z — issetif the destination register becomes zero as a result of the operation, otherwise
it is cleared. . (
CA — issetif thereisaborrowoutofthe most significant bit of the result.
OF — s set if arithmetic overflow occurs.
RI
0 5,6 . 910 1213 15
0000OCO[0 1 11 Gt G2

REGISTER INVERT: g1 := -9—2 The . contents of the source register specified is logically inverted and loaded into
the destination register. An alternative equivalent definition is that the integer - 1.is placed in the detination reglster

and the content of the source register is subtracted therefrom.

Condition Markers

N — isset to the sign of the result.

Z — issetif the destination register becomes tero as a result of the operation,
otherwise it is cleared.

CA -~ not affected.

OF ~ not affected.

60

11. FLOATING POINT OPERATION

The following sections describe the Floating Point features of the computer. Floating Point
operations. may only be performed if the FM conditions marker is set to a one, when a number of Format A
instructions are reinterpreted as Floating Point operations, and a number of additional Format L instructions
becorne available.

11.1 'FLOATING POINT NUMBER REPRESENTATION

-Two Floating Point number formats are available, differing in the degree of precision they
provide. Short precision floating point operands provide 24 bits of mantissa, whilst Long precision operands
provide 56 bits of mantissa. In both cases the number is completed by a single bit giving the sign of the mantissa,
and a 7 bit exponent.

Short operands therefore occupy 1 (sign) + 7 (exponent) + 24 (mantissa) = 32 bits
and Long operands occupy 1 +7 + 56 =64 bits

in whét follows, we define:
M = the arithmetic value of the mantissa of the number, treated as an urisigned fraction.
E = the value of the exponent of the number.

- The value of a floating point number is fhen given by:—

ifS=0,valueis M=«161E
ifS=1, value is -M=*161E

Note that a hexadecimal radux is used; increasing E by 1 is equivalent to multiplying M by 16
(i.e. left shifting M four places).

11.2. FLOATING POINT STORE FORMAT

Short floating point numbers are held as fullwords in store, and Long ﬂoatmg point numbers as
doublewords in the formats shown:—

o 1 7.8 31
Short:— | S EXP .. MANTISSA

0 1 7.8 31

S EXP MANTISSA (MS 24 Bits)

Long:—
.t MANTlSSA (LS 32 Bits)

Where S is the sign bit, which determines the sign of the Mantissa as shown above, EXP defines the exponent,
whose value is given by E = EXP—64, and MANTISSA is the mantissa, occupying 6 hex dugtts (24 bits) in short
precision or 14 hex digits (56 bits) in long precision formats. .

11.3 FLOATING POINT REGISTER FORMAT

When a floating point operation is performed which leavesa result in registers, the number is held as
foliows:—. ro :

The Sign is held in a hardware staticisor (SAC) which is not directly accessible to the programmer.

61

The Exponent is held in the 7 bit exponent { E) register.

The Mantissa is held in the combined B and A register, the most significant part in the B and the
least significant part(if any) in A.

Short mantissae are held as shown:—

§ B -) A
0000 MANTISSA 00000 : - _ 0

t
Binary Point

The Mantissa is held in B, shifted 4 places. The most significant (MS) and least significant (LS)
4 bits of B.are called guard digits, and after any operation will be set to zero. The A register is cleared.

Long mantissae are held as shown:—

B ' ‘ A

0000 MAN|TISSA 0000

?
Binary Point

The mantissa is held in BA, right shifted 4 places. The MS 4 bits of B and the LS 4 bits of A are
the guard digits, and after any operation will be set to zero.

In both cases, the binary point is located immediately before the first hex digit of the Mantissa.

Unpacking of numbers from store to register format and loading and packing of numbers from
register to store format on storing are performed automatically.

This structure is referred to as the Floating Accumulator.
11.4 NORMAL REPRESENTATION

A floating point number is said to be normalised if the MS hex digit of the Mantissa is non zero.
Thus for a normalised number, M is in the range.

1>m=>2"

" Floating point arithmetic instructions only have defined effects if both operands of the instruction
are normalised. Similarly, all arithmetic operations produce results which are normalised.

11.5 FLOATING POINT ZERO

Evidently, any operand with a Mantissa of zero has value zero. The normal representation of
zero is an operand with sign bit S and EXP also equal to zero. Thus floating point zero is identical to fixed point
zero.

11.6 MIXED PRECISION OPERATION

Short and long floating point operations can be mixed indiscriminately. Thus short floating point
operations can be performed with long floating point operands in the accumulator and long operations with short
. operands in the accumulator. In the first case, the long accumulator operand will be truncated to short precision
(by zeroing the least significant 8 hex digits of the mantissa) before the operation, whilst in the second case the
short accumulator operand is extended to long precision by appending least significant zero hex digits, before
the operation is performed. ‘

62

11.7 OVERFLOW AND UNDERFLOW

If the result of a fioafing point operation has an exponent E greater than 63, it cannot be expressed
in the normal representation and floating point overflow is said to have occurred. Under these circumstances the
OF conditions bit is set, but the result of the operation is not defined.

If the result of a floating point operation has an exponent E less than -64, or if the mantissa of a

result is zero, underflow is said to have occurred. This is not an error: the result is replaced by floating point zero
in standard form, '

63

- 120 v _ THE FLOATING POINT INSTRUCTION SET

The following instructions change their definition when the FM condition marker is set:—

FM=0 FM=1

LD FLD — FLOATING LOAD

AD FAD - FLOATING ADD

SB FSB — - FLOATING SUBTRACT

cp FCP — FLOATING COMPARE

N FLT — FLOAT

M M — FLOATING MULTIPLY

D FD — FLOATING DIVIDE

ST FST — FLOATING STORE

LDW - ELD — ~ EXTENDED FLOATING LOAD
ADW EAD: — EXTENDED FLOATING ADD

SBW ESB — EXTENDED FLOATING SUBTRACT
CPW ECP — EXTENDED FLOATING COMPARE
NW FIX - FIX :

Mw EM — EXTENDED FLOATING MULTIPLY
DW ED — EXTENDED FLOATING DIVIDE
STW EST — EXTENDED FLOATING STORE

12.1 NORMAL LENGTH OPERATIONS
These 6perations all use short Floating Point operands.

FLD

0 5 6 15

100000 "ADDR (FM =1 only)

FLOATING LOAD: fa := fq. The short floating point operand from store is loaded into the floating accumulator.

No normalisation checks are performed during this instruction; thus it is possible to load an
unnormalised number into the registers. If the mantissa of such a number is zero, the Z condition bit is set even
if S.and EXP are not zero.

Condition Markers
N — isset to the sign of the floating point number loaded.
Z —~ is setif the floating point number loaded is zero, otherwise it is cleared.
CA — notaffected.
OF — - not affected.
FAD
0 5 6 15
100001 ADDR (FM =1 only)

FLOATING ADD: fa := fa + fq. The short floating point operand from store is added to the short floating point
number held in the Floating Accumulator and the short result appears in the Floating Accumulator. Details of
rounding etc. are given in Appendix 12A.

Condition Markers

N - setif the result is negative.

Z - setif the result is zero, or if exponent underﬂow occurs.
CA - :: not affected

OF —""setto'Tif exponent overﬂow (EXP >1 27) occurs.’

SRR S
Cutarn §om et

FLOATING SUBTRACT: fa :=fa = fq. The short floating point operand from store is subtracted from the short
floating point number held in the Floating Accumulator and the short result appears in the: Floating Accumulator.
Details of rounding etc. are given in Appendix 12A.

Condition Markers

N A set lf the result w negatwe «

Z - set if the result is zero, or if exponent underflow occurs

CA - . Dot affected. .
TTOF T - setto 1fexponent overﬂow (EXP> 127)6c"curs

FCP
0 5.6 : 15
110001 1|. . ApDR (FM =1 only)

FLOATING COMPARE: form fa - fq. The short floating point number held in the Floatfng Accumulator is
compared with the short floating point operand from store. The condition ’markers indicate the result.

Condition Markers
N "2 is set if the floating point number held in the Floating Accumulator is less than the
floating point operand from store, otherwise it is cleared.
Z - ~ s setif the floating point number held in the Floating Accumulator is equal to the
floating point operand from store, otherwise. it is cleared.
CA ~ notaffected. ‘
OF — notaffected.
FM
) 5,6 15
10 010 1 ADDR (FM =1 only)

FLOATING MULTIPLY: ea :=fa » fq. The short floating point number held in the registers (the multiplicand)
+is multiplied: by the short floating point operand from store;(the -multiplier). The 48 bit product is extended to
58:bits with least significant.zeros to produce a:-long floating point result which is normalised and placed inthe
--Floatitig Accumilator.. Details ‘of the bperation are given in:Appendix:12A.. : . C

Condition Markers

i set to the sign of the floating point result.
‘w5 s set if the floating point result is-zero or if underﬂow occurs as above If neither
of these conditions apply Z is cleared.

CA -~ notaffected o
is set if exponent overflow occurs in which case the result, N and Z are undeﬁned.

.
|

)
=
|

65

FD

0 5 6 : S 18

1700110 ADDR (FM =1 only)

FLOATING DIVIDE: fa :=fa + fg. The short floating point number held in the Floating Accumulator
(the dividend). is.divided by the short floating point operand from store (divisar). The short result appears in the
Floating Accumulator. Details of the operation are given in Appendix 12A.

If an attempt is made to divide with a zero or unnormalised divisor the operation is abandoned.
The.OF condition marker is set and the result is undefined. The least significant 32 bits of the extended
. accumulator (AM and AL) will not be cleared in this case.

Condition Markers.

N — s set to the sign of the floating point result. :
Z — issetif the mantissa of the floating point result is zero or if undeflow occurs as
above. If neither of these conditions apply Z is cleared.
CA - notaffected. ’
OF — issetif exponent overflow occurs in which case the result, N and Z are undefined.
FST
0 5 6 » 15
100111 ADDR (FM =1 only)

FLOATING STORE: fq := fa. The short floating point operand in the Floating Accumulator registers are stored
in the format shown in 8.2,

Condition Markers
N — s set to the sign of the stored floating point number.
Z - issetif the floating point number is zero, otherwwe it is cleared.
CA -~ notaffected.
OF - not affec ted.
12.2 EXTENDED OPERATIONS

These operations all use long floating point operands. ‘

ELD

] 5 6 15

101000/ ADDR (FM = 1 only)

- EXTENDED LOAD: ea :=eq. The long floating point operand from store is loaded into the Floating Accumulator.
Normalisation checks are NOT carried out during this:instruction. It is thus possible to load unnormalised operands
into the registers. If the mantissa of such a:number is zero, the Z-condition. bit is set even if S and EXP are non zero.

Condition Markers

N — s set to the sign of the extended point number loaded.

Z — . issetif the floating point number loaded is zero, otherwise it is cleared.
CA - notaffected. i ,

OF — not affected.

66

EAD

1010 01 ADDR (FM =1 only)

EXTENDED ADD: ea :='ea + eq. The long floating point operand from store is added to the long floating point
number held in the Floating Accumulator and the result appears in the Floating Accumulator. ' ‘

Condition Markers

N — setif the result is negative.

Z — setif the result is zero, or if exponent underflow occurs.
CA - notaffected. ‘

OF — setto 1 if exponent overflow (EXP> 127) occurs.

ESB

0 § 6 15

101010 ADDR (FM =1 only)

EXTENDED SUBTRACT: ea := ea - eq. The long floating point operand from store is subtracted from the
long floating point number held in the Floating Accumulator and the result appears in the Floating Accumutator.

Condition Markers

N~ setif the result is negative.

Z — setif the result is zero, or if exponent underflow occurs.
CA —~ notaffected.

OF - set to 1 if exponent overflow (EXP > 127) occurs.

ECP

0 5 6 15

101011 ADDR (FM =1 only)

EXTENDED COMPARE: form ea - eq. The long floating point number held in the Floating Accumulator
compared with the long floating point operand from store. The condition markers indicate the result.

Condition Markers

N~ issetif the floating point number held in the Floating Accumulator is less than the
floating point operand from store, otherwise it is cleared.

Z — issetif the floating point number held in the Floating Accumulator is equal to the
floating point operand from store, otherwise it is cleared.

CA — notaffected. ‘

OF —~ not affected.

67

EM

0

5

6

15

101101

ADDR

(FM =1 only)

EXTENDED MULTIPLY: ea := ea » eq. The long floating point number held in the Floating Accumulator
(the multiplicand) is multiplied by long floating point operand from store {the multiplier}. The long floating

point result is placed in the Floating Accumulator.

Condition Markers
N — s set to the sign of the floating point result.
Z = issetif the floating point result is zero or if underflow occurs as above. If neither
of these conditions apply Z is cleared. . ‘
CA - notaffected.
OF ~ s set if exponent overflow occurs in which case the result, N and Z are undefined.
ED
° 5 6 15
101110 ADDR {FM =1 only)

EXTEND DIVIDE: ea := ea + eq. The long floating point number in the Floating Accumulator (the dividend)
is divided by the long floating point operand from store (the divisor). The long result is placed in the Fioating

Accumulator.

Condition Markers
N — isset to the sign of the floating point result.
Z — isset if the mantissa of the floating point result is zero or if underflow occurs as
above. If neither of these conditions apply Z is cleared. ‘
CA - notaffected _
OF — s set if exponent overflow occurs in which case the result, N and Z are undefined.
EST
0 56 15
1011 11 ADDR (FM = 1 only)

EXTENDED STORE: eq := ea. The extended floating point operand in the Floating Accumulator is stored in

the format shown in 8.2.

Conditions Markers

N~ is set to the sign of the stored floating point number.

Z — isset if the floating point number is zero, otherwise it is cleared.
CA - notaffected.

OF — notaffected.

68

i2.3 FLOATING POINT CONVERSION INSTRUCTIONS

¥LT

L] 5§ 6 15

100100 - ADDR : (FM = 1 only)

FLOAT AND LOAD: A 32 bit integer from store is converted into the equivalent long floating point number
and loaded into the Floating Accumulator. The operation is described in detail in Appendix 12A.

Condition Markers
N — isset to the sign of the floating point number.
Z — isset if the floating point number generated is zero, otherwise it is cleared.
CA - not affected.
OF — not affected.
FIX
0 , 5 6 15
101100 ADDR (FM = 1 only)

FIX AND STORE: The long floating point number in the Floating Accumulator converted into an equivalent
integer and stored. A fractional floating point remainder is left in the Floating Accumulator.’

If the origina! Floating point number is in the range ~1<Number < + 1, the result is zero, and
the Floating Accumulator is unchanged. If the number is outside the range -231 < Number < 23! -1, overflow
will occur. Details of the operation are given in Appendix 12A.

Condition Markers

N — s set to the sign of the integer that is stored.

Z — issetif the integer formed is zero, otherwise it is cleared.

CA - notaffected.)

OF — - s set if significant bits are lost when truncating the integer formed to 32 bits, i.e.

if the floating point number to be fixed is unable to be represented as a 32 bit integer
and fractional floating point remainder.

124 FLOATING POINT INSTRUCTIONS IN FORMAT L

_ There are 3 such instructions:—

SFM — SET FLOATING MODE
SiM — SET INTEGER MODE

FNEG — NEGATE FLOATING POINT NUMBER
As descrfbed in section 5 the CPU has an integer mode of operation and a floating point
mode of operation. The instructions SFM and SIM provide the facility for switching between these two modes of

operation.

1f the instruction FNEG is used with the central processor in integer mode the effect is undefined.

.69

SFM

0 1 2 7 8 15

00/j0 101 1100000 00 1

SET FLOATING MODE: FM := 1. When executed this instruction causes the floating marker flag (FM) to be set.
This flag is part of the register that holds the condition markers and is treated in the same way as N, Z, OF and CA.

If this instruction is executed with the FM flag already set then it has no effect.
Condition Markers
Not affectekd.

SIM

o 1 2 7 8 15

0001 011 1j000000O0O0OO

SET INTEGER MODE: FM = 0. When executed this instruction causes thé floating marker flag (FM) to be cleared.
If the instruction is executed with FM already cleared then it has no effect.
Condition Markers
Not affected.

FNEG

o 1 2 7 8 15

00/j010111{000000 10 (FM =1 only)

FLOATING NEGATE: ea:= -ea. When executed this instruction changes the sign of the floating point number
held in the Floating Accumulator. If the instruction is executed with FM=0, it will affect the A register in an undefined
manner.
If the floating point number held in the Floating Accumulator is not normalised the instruction
will cause it to be replaced with floating point zero.

Condition Markers

N =~ isset to the new sign of the floating point number held in the register.
Z — issetif theresultis zero, otherwise it is cleared.

CA - notaffected. ‘

OF — notaffected.

70

APPENDIX 12A: FLOATING POINT ARITHMETIC

1.1 - INTRODUCTION

The following sections describe the operations of Floating Point Addition, Subtraction, Multiplication,
and Division. They are provided for the benefit of those who require to know details of accuracy, rounding etc. It
should be noted that the algorithms presented are idealised, and have the same effect as but are not necessarily the
same as the algorithms implemented by the hardware. For instance the hardware does not perform the arbitrarily
long shifts implied in some places. ‘ '

1.2 FLOATING POINT ADDITION AND SUBTRACTION

Floating Point Addition is carried out as described in this section. Floating Point Subtraction is carried
out by negating the subtrahend (by logically inverting its sign bit if it is non zero) and then performing an addition.

(a) The exponents of the two operands are compared. If they differ, the operand with the smaller
exponent is aligned by shifting its Mantissa right four places at a time, incrementing its exponent
by 1 for each four places shifted, until the two exponents are equal. After each shift, the four bits
just shifted out of the mantissa are retained in the Guard Digit. If the number of places of shift
required is greater than 28 (short precision) or 60 ({long precision}, then the operand will be shifted
completely outof the accumulator. In this case the result is equal to the larger of the two operands.

(b) An intermediate result is now formed whose exponent is equal to the larger of the two operand
exponents, and whose sign and (positive) mantissa are found by adding or subtracting the two
mantissae having regard for their signs and magnitudes.

I the signs of the operands are the same, the mantissae are added, and the sign of the resuit is the
same as the sign of the operands.

If the signs differ, the smaller mantissa is subtracted from the larger mantissa, and the sign of the
result is the same as the sign of the larger operand.

In all cases the mantissa of the intermediate result consists of 32 bits (short precision) or 64 bits
{long precision) and is in the range 0 < mantissa < 2.

(c) The final result is now formed by normalising the intermediate result if necessary as follows:—

(i) If the mantissa is already normalised, no further operations are necessary, and the final
- result equals the intermediate result with its guard digit reset to zero.

(ii) If the intermediate result mantissa is zero, then a clean zero result is generated by setting
the sign and exponent to zero.

(iii) If the intermediate result mantissa is greater than or equal to 1, it is normalised by right
shifting four places and adding one to the exponent. The guard digit is then reset to zero.
If after the shift the exponent is greater than 63, overflow has occurred. OF is set and the
result is undefined. : :

{iv) If the mantissa is less than Y. it is left shifted four places at a time until it is normalised,
subtracting 1 from the exponent for each four places shifted. The guard digit is then reset
to zero. If after the shifts, the exponent is less than - 64, underflow has occurred. In this
case the result is replaced by clean zero.

App.12A 71

1.3

L4

(a)

(b)

{c)

(d)

(a)

(b)

(c)

FLOATING POINT MULTIPLICATION

Floating Point Multiplication is carried out as follows:

An intermediate result is formed by adding the exponents of the operands and multiplying their
mantissae. The sign of the result is positive if the signs of the operands are the same, and is negative
otherwise. The mantissa is in the range

1
256 < mantissa <1

and for long operation is the most significant 60 bits of the 112 bit product, whilst for short operations
the 48 bit product is extended to 60 bits by appending low order zeroes. The exponent of the inter-
mediate result is held to 8 bits, and no overflow can occur at this stage.

The final result is now formed by normalising the intermediate result if necessary as follows:—

{i) If the mantissa is already normalised, no further operations are necessary. The result is
truncated to 56 bits by zeroing the guard digit.

{ii) If the intermediate result mantissa is zero, then a clean zero result is generated.

(iii) If the mantissa is less than Y, it is normalised by left shifting four places and subtracting
1 from the exponent. Note that only one normalising shift is necessary. The result is then
truncated to 56 bits as described above.

If after normalisation, the exponent is greater than 63, overflow has occurred. OF is set and the
result is undefined. If after normalisation the exponent is less than -64, underflow has occurred.
The result is replaced by clean zero. ‘

Note that the result of a short Floating Point multiply wiil be a long Flbating Point number, and
will not be truncated to 24 bits,

FLOATING POINT DIVISION
Floating Point Division is carried out as follows:

If the divisor (store operand) is zero, the operation cannot be performed. OF is set to record
overflow, and the result is undefined.

Otherwise, an intermediate result is formed by subtracting the exponent of the divisor from the
exponent of the dividend (accumulator operand) and dividing the mantissa of the dividend by the
mantissa of the divisor. The sign of the result is positive if the sign of the operands is the same, and
is negative otherwise. The mantissa is in the range

% < mantissa < 16

~and compyrises the ms 28 bits of the quotient (short precision) or 60 bits {long precision). The

exponent is held to 8 bits and no overflow can occur at this stage.

The final result is now formed by normalising the intermediate result if necessary as follows:—

(i) If the mantissa is already normalised, no further operations are necessary. The result is
truncated to 24 bits (short operations) or 56 bits (long operations) by zeroing the guard
digit.

(ii) If the intermediate result mantissa is zero (this can only occur if the dividend was zero)

then a clean zero result is generated.

72 App.12A

{iif) If the mantissa is greater than or equal to 1, it is normalised by right shifting four places
and adding 1 to the exponent. Note that only one normalising shift is necessary. The result
is then truncated to 24 bits {short) or 56 bits (long) as described.above.

(d) I, after normalisation, the exponent is greater than 63, overflow has occurred. OF is set and the
result is undefined.

If after normalisation the exponent is less than ~64, underflow has occurred. The result is replaced by
-.clean zero.

1.5 THE FLT INSTRUCTION

" The Float 6peration is carried out as follows:-

.. A long floating point number is formed with E = +8, MANTISSA = magnitude of the integer operand,
and S = 0 if the integer is positive or zero, and S = 1 if the integer is negative. This long fioating point number is now
normalised if necessary and placed in the Floating Accumulator. If its mantissa is zero, a clean Zero result is entered.

1.6 ~ THE FIX INSTRUCTION

The Fix operation is carried out as follows:-

First the exponent E of the number in the Floating Accumulator is tested. If E < 0, the number
has no integer part. In this case a zero integer is placed in store and the Floating Point accumulator is unchanged;

this completes the operation.

if E > 1, the number can be expressed as either + (1 + F) if it is positive, or - (1 + F) if it is negative,
where in both cases | is a noh zero integer and F is a (possibly zero) fraction. The 2s complement integer resuit in
store is formed by taking |, negating it if it was negative, and truncating to 32 bits. If significant bits are lost in the
truncation, Overflow has occurred, and the result placed in store will be the LS 32 bits of the true integer result.

Whether overflow occurs or not, the fractional remainder F is found by left shifting the mantissa of
the original number four places at a time, decrementing E by 1for each place of shift, until E becomes zero. The
resulting number is now normalised if necessary and placed in the Floating Accumulator. If its mantissa is zero, a
clean zero result is recorded.

Note that the fractional remainder will always be correct, even if the integer result overflows.

App.12A 73

13. CONTROL INSTRUCTIONS AVAILABLE IN BASIC MODE

Channel Interrupt

Eight interrupt lines are provided on the Command Interface (see CPU Basic Multiplexer Channel
Manual) and any one of eight Input Output Processors {including the Basic Multiplexer Channel) may interrupt
over this interface. :

When in basic test mode the central processor takes the following action if interrupt by any input
output processor:—

(i) The number of the highest priority channel interrupting the processor is written into the
halfword location at address zero.

(ii) The contents of the program accessible registers S, L, B, A, X, Y, Z, E/C are written into
locations 2 onwards of store. -

STORE LAYOUT

0 = INT CODE (ERROR CODE)
2 = S Register
4 = L. Register
6 = BM Register
8 = BL Register
10 = AM Register
12 = AL Register
14 = X Register
16 = Y Register
18 = Z Register
20 = E/C Register
22 = INTERRUPT VALUE OF S
24 = INTERRUPT VALUE OF L
(iii) The S register is loaded from location 22 of store and the L register from location 24.
(iv) Interrupts are inhibited.
Error Interrupts
If an error condition arises whilst a program is running the following sequence of events is
performed:—
(i) An integer value is placed in location O of store to identify the cause of the interrupt.
(ii) The interrupt sequence in the previous paragraph is performed.

74

& ERROR CODES

INT CODE ERROR CODE
Store Parity 8
Power Fail 9
Store Time QOut 12
Start Up 13
lllegal Instruction 14
Command Interface Time Out 16

NOTE: When starting from the RESET condition the S and L registers are loaded from locations 22 and 24 respectively
and code 13 is placed in location 0.

The following instructions are provided in Format L for the control of input/output and interrupt
handling in Basic Test Mode:—

INT - INTERRUPT CONTROL
1/0 - INPUT/OUTPUT CONTROL
& 13.1 INT — INTERRUPT CONTROL

Five variants of this instruction are provided and these are further defined by the disptacement
field of the instruction as follows:—

8 12 13 15

0000O00O M

M INSTRUCTION

000 AINT — ACKNOWLEDGE INTERRUPT

001 PERM - PERMIT INTERRUPT

010 INH — INHIBIT INTERRUPT

011 TERM — TERMINATE INTERRUPT PROGRAM
100 SINT — SOFTWARE INTERRUPT

Interrupt Instructions
AINT
0 1 2 7.8 4 1

0 0/01 1100006000000

ACKNOWLEDGE INTERRUPT: This-instruction allows an acknowledge interrupt cycle to take place ovér the
command interface causing the selected 10P-to reset its interrupt line.

~ The number of the 10P involved is held in.location zero of store.
Condition Markers

Not affected.

75

PERM

o 1 2 7 8 , 15

00{011100/000000O01

PERMIT INTERRUPTS: This instruction allows the central processor to take the action described in Channel
Interrupt on receipt of an interrupt. '

Condition Markers
" Not affected.

INH

0o 1 2 7 8 15

oo0jo1 1100(0 0000010

INHIBIT INTERRUPTS: This instruction prevents the central processor from taking the action described in
Channel Interrupt until after a PERM or TERM instruction has been executed.

Condition Markers
Not affected.

TERM

0o 1 2 7 8 1§

00/011 100006000011

TERMINATE INTERRUPT PROGRAM: This instruction causes the program accesible registers S, L, B, A, X,
Y, Z, E/C to be loaded from location 2 onwards of store. Having loaded the registers interrupts are then permitted.

Condition Markers

The Condition Markers are loaded from byte 21 of store.
SINT

o 1 2 7 8 15

oo/o1 11 00/000O0O0C100

GENERATE SOFTWARE INTERRUPT: The effect of this instruction is to store register A in location zero of
store and then force the central processor to take action as if it had received an interrupt (i.e. that described in
Channel interrupt). This instruction takes effect whether interrupts are inhibited or not.

~ Condition Markers

Not affected.

76

™ 131 1/0 — INPUT/OUTPUT CONTROL

" Two variants of this instruction are provided and these are furthér defined by the displacement
field of the instruction as follows:—

8 910 - 12 13 15

0|M{0C 0O O N

The N field of the instruction defines the channel number over which input/output is to be
carried out, i.e. channels 07,

The M field defines whether input or output is to take place.

M ACTION
N .
0 IN — INPUT OVER CHANNEL DEFINED BY N
1 OUT — OUTPUT OVER CHANNEL DEFINED BY N
IN
0 1 2 78 12 13 15
00/01 110100000 N
INPUT FROM CHANNEL N: The way number of the selected device is defined by the contents of the Z register.
Data from the selected device is placed in AL with AM being cleared. The condition markers are
set to indicate the result of the operation as follows:—
N
N z OF CA MEANING
0 0 0 0 Operation Successfull
X X 1 X Operation Failed
When an error is indicated by OF being set to 1, N,Z and CA may be used to indicate the cause of
failure by the 1OP, :
ouT
1] 1 2 7 8 12 13 15
00/{011T10101 000 N

OUTPUT TO CHANNEL N: The way number of the selected device is defined by the contents of register Z as it is
for input. ’

77

.78

Data from A, is output to the selected device at the same time A,, is cleared. Data from the 10P
may be input to A_at this time, however, the BMC does not make use of this feature and thus A is left with
the original data that has been output to the |OP.

The condition markers are set to indicate the result of the operation as for input.

Supplement 1: SUMMARY OF INSTRUCTIONS

SUMMARY OF INSTRﬁCTION FORMATS

This Supplement proyides a quick tabular reference to the instructions available in the computer
instruction set. A full description of each instruction, and the formats in which they are available, is given
earlier in this manual. '

FORMATB

Q=S * 2D (D treated as a Signed Integer)

FORMAT Al

0 5.6 '8 15
F 01 D
Q=D*
FORMAT A2
o 5 6 7 8 9 15
F 1 M D
M=0 Q=1+D*
=1 =s+D*
=2 =y+D*
=3 =z+D*
FORMAT A3
0 5 6 9 10 15
F 0 0 01 D
Q= (2D) + x*
FORMAT A4
° 5 6 8 9 10 11 15
F 0 0 1 M D
M=0 Q={+2D) +x*
=1 =(sf20)»+x*
=2 =({y+2D) + x*
=3 =(z+2D) + x* .

Supp.1

1

FORMAT A5

[} § 6 9 .10 11 12 15

F 0 00O0 M|. D

Q=1+D"+x*

M=0
=1 = D*+x*
=2 =y+D* +x*
=3 =z+D*+x*
FORMAT L
o 1 2 7 8 15
00 F D

Arithmetic Operations — D is unsigned literal operand
Conditional Branches — D is signed Integer Displacement
Control Operations — D defines operation

Shifts, Bit Operations — See below.

FORMAT RR

() 5 6 9.10 12 13 15
0000O00O0 F G1 G2
G1,G1=0 Register=0
= = A
= = B
= =X
= = L
= = S
= =Y
= =27
FORMAT L — SHIFTS
0 7 8 10 11 15
SHL/SHX M N
M defines shift type
N defines places of shift = N (left shifts)
= 32—N (right shifts)
FORMAT L — BIT OPS
0 7.8 11 12 15
BITL/BITX M N

2

M defines operation
N defines bit number of L.s. 16 bits of A involved

Supp.1

SUMMARY OF INSTRUCTIONS

MNEMONIC EFFECT CONDITIONS HEX | FORMAT |CLASS
N y4 OF CA

LD* - a:=hq » a<0| a=0 - — | 8000 A H
AD* a:=a+hq ‘ r<0| a=0 r r 18400 A H
sB* . . am=a-hq r<0| a=0 r o r 8800! A H
cp* form a- hqand setN,Z,CA,OF | a<hg| a=hq| r r 8C00 A H
N* a:=al\hq a<0| a=0 - — | 9000 A H
m* a:=a=+hg r<01| a= r — | 9400 A H
D* *a:=a+hq; b :=remainder a<0 | a= r — | 9800 A H
ST* hq :=ha hg<0| hq=0{hg+a - 9C00 A H
LDw* a:=wq a<0| a=0 - — | AOOO}] A w
ADW* | Ca=atwg r<o0| a=0 | r r | Ad00] A w
SBW* a:=a—wg : r<0 | a=0 r r A800| A w
cPwW* form a— wqandsetN,Z,CAOF | a<wgq| a=wqi r r AC00 A W
Nw* - ar=alAwg a<0 | a= - — | BOOO A w
MwW* da :=a*wq <0 |da=0 | - — | B40O| A w
pw* a:=da+wq; b:=remainder |r<0 | &=0 | - ~ | B8OO| A w
STW* . wq =2 wa<0| wg=0| - ~ | BCOO| A w
LDX x := hq x<0 | x= - — | cooof A H
ADX x :=x+hq ‘ <0 | x= r r C400 A H
SBX X :=x-hq ‘ <0 | x= r r C800 A | H
CPX form x - hqand set N,Z,CA,OF | x<hq| x=hq r r CCO00 A H
NX x :=xAhqg x<0 | x=0 - — | D000 A H
MX X :=x» hqg ~ r<0 | x=0 r | -~ | D400l A . H
DX X :=x+hq x<0 | x= r .— | D800} A H
STX hqg :=x hg<0| hg=0 - - DC00 A H
LDY : y:=hq - - - - | EO00 A H
ADY y:=y+hq —_ - - - E400 A H
SBY vy :=y~-hq - - - — E800 A H
STY " hg:=y _ - | - -~ - | Ecoo| A H
LDZ ‘ z:= hq - - - —~ [FOOO| A H
ADZ z:=z+hq - — — - F400 A H
SBZ z:=z-hq - - - —_ F800 A H
STZ hg:=z - - - — | FCOO0 A H
LDB a:=bq ‘ 0 |a= - -~ | 4a000] A B
LBX x = bq 0 |x= - — | 4400] A B
CPB form a — bg and set N,Z,CA,OF | a<bgq | a=bq - - 4C00 A B
NBS bq := bq A ba 0 bg=0 —_— - 5000 A B
08S bq :=bqV ba 0 |bg=0 - - | 5400f A B
XBS bqg := bq ¥ ba) bg=0 - — | 5800 A B
STB bq := ba 0 |bg=0 - — | 5C00 A B

* Instructions available if FM = 0 only.

Supp.1 3

CONDITIONS

MNEMONIC EFFECT N 2 OF ICA HEX | FORMAT | CLASS
DECS hq:=hq-1 r<0 | hg=0 r r 4800 A H
INCS hg:=hqg+1 r<0 | hg=0 r r 7C00 A H
HAY y:=hQ - - - - 6000 A H
HAZ z:=hQ - - - - 7000 A H
L.DM load B,A,X,Y,Z,E,C from WO:WQ+14 C4* Cs* Cg" |C;* [6400 A w
STM store B,A,X,Y,Z,E,Cin WQ: WQ+14 - - | - | = |es00 A w
LDL a:=D 0 a=0 - - 2000 L LB
ADL a:=a+D r<0 | a= r r 2100 L LB
SBL a:=a-D r<0 | a= r r 2200 L LB
CPL form a- D and set N,Z,CA,OF a<D | a=D r r 2300 L LB
NL a:=aAD 0 a= - - 2400 L LB
ML "a:=a*D r<0 [a= r - 2500 L LB
DL a:=a+D;b:=remainder |a<0 |a= r - 2600 |- L LB
LDXL x:=D 0 x=0 - - 3000 L LB
ADXL x:=x+D r<0 | x=0 r r 3100 L LB
SBXL x:=x-D r<0 | x= r r 3200 L LB
CPXL form x - D and set N,Z,CA,OF x<D =D r r 3300 L LB
NXL x:=xAD 0 | x=0 - - 3400 L LB
MXL x:=x D <0 | x=0 r - 3500 L LB
DXL x =x+D x<0 | x=0 r - 3600 L LB
LDYL y:=D - - - - 3800 L LB
ADYL yi=y+D - - - - 3900 L LB
SBYL y:==y=-D - - - - 3A00 L LB
CPYL formy - D and set N,Z,CA,OF y<D | y=D r r 1800 L LB
LDZL z:=D - - - - 3F00 L LB
ADZL z:=z+D - - - - 3D00 L LB
SBZL z:=z-D - - - - 3E00 L LB
CPZL formz-D andset N, Z,CA,OF y<D | y=D r r 1F00 L LB
B s:=Q - - - - 0400 8
BL z:=s;5:=Q - - - - 0800 B
B s :=hq - - - - 7400 A H
BL! z:=s;s5:=hqg - - - - 7800 A H
8N s:=stDifN=1 - - - - 2800 L BR
BNN s:=saDifN=0 - - - - 2900 L BR
BZ s:=sxDifZ=1 - - - - 2A00 L BR
BNZ s:=s*DifZ2=0 - e - 2B00 L BR
BP s:=s*DifN=0&Z=0 - - |- - 2C00 L BR
BNP s:=stDifN=10orZ=1 - - - - 2D00 L BR
BOF s:=s*DifOF=1;0F=0 - - 0 - 2E00 L BR
BNCA s:=s*DifCA=0 - - = - 2F00 L BR
BPAR . s :=s £.D if ba has odd parity; — - - — 1800 L BR

4 Supp.1

* Ca,5.6.7 are the LS 4 bits of byte WQ +14.

- CONDITIONS

MNEMONIC EFFECT N Z OF | CA HEX |FORMAT | CLASS
SHL Shift Literal: D defines type and places 19XX| L SH
SHX Shift Indexed: D + x defines type and '

places, ‘ 3BXX| L SH

(N is I.s. 5 bitsof D + x) ’
SBAR,SBRX | Shift da right arithmetic 32—N places | da<0|da=0 - - XX00{ L SH
SBAL,SBLX | Shift daleft arithmetic N places da<0|da=0 r - XX20| L SH
SR, SRX | Shift a right arithmetic 32—N places a<0j a=0 — - XX40| L SH
SL, SLX | Shift aleft arithmetic N places a<0| a=0 r - XX60| L SH
SRL, SRLX | Shift a right logical 32—N places a<0| a=0 - - XX80{ L SH
SLC, SLCX | Shift aleft circular N places a<0| a= - - XXAQ0 L SH
SXR, SXRX| Shift x right arithmetic 32N places | x<0| x=0 —- - XXDQ L SH
SXL, SXLX| Shift x left arithmetic N places x<0} x=0 - - XXEO| L SH
BITL Bit operation Literal:D defines 16XX] L BIT

operation

BITX Bit operation Indexed:D + x defines L BIT

operation “15XX

(N is L.s. 4 bits of D + x) . L BIT
TSTB,TSTX | Set Z =1 if bit N of ha is zero bit=0 = - XX00| L BIT
TGLB,TGLX| Change the state of bit N of ha ha=0 ~ - XX90{ BIT
PLCB,PLCX | Setbit N of ha to 1, reset all other bity 0 - - XXAQ BIT
SETB,SETX | Set bit N of ha to 1 ha=0 | — | - XXB0| | BIT
CLRB,CLRX| Reset bit Nof hato0 ha=0 -1 - XXEOf | BIT

! ;
MBS Move byte strings 0 1 - - 2700 L C
CPBS Compare byte strings r<0 ! end - - 2740 L Cc
TRBS Translate byte strings 0 1 - - 2780 L C
SCBS | Scan byte strings 0 {end - - 27C0 L C
MHS Move halfword strings 0 1 - - 3700 L Cc .
RK a := keys a<0 | a= - - 1200 1 L Cc
HRK Halt processor; then a := keys a<0 |a= - - 1201 L C
PEC x := priority encode of bits of ha - - - - 1E00 L Cc
SEXT da:=a da<0 |da=0 - - 3C00 L c
RADC gl :=gl+g2+CA <0 g1=0 | r r 0040 RR
RSBC gl :=gl-g2- CA r<0 |g1=0 r r 0080 RR
RNA gl :=g2-g1 r<0 jg1=0 r r 0100 RR
RADI! gl :=gl+g2+1 r<0 lg1=0 r 0140 RR
RSBI gl:=g1-9g2-1 <0 ig1=0 r 0180 ‘RR
RI gl :=g2 g1<0g1=0 | — | — 01C0 | RR
RLD gl :=¢g2 g1<0 1g1=0 - - 0200 RR
RAD gl :=g1+g2 r<0 [g1=0 r r 0240 RR
RSB g1 =gl -g2 r<0 |g1=0 r r 0280 RR
RCP - form g1 - g2 and setN,Z,CA,OF g1<g2 [g1=92 r r 02C0 RR
RN gl :=gt Ag2 g1<0ig1=0 - - 0300 RR
RO gl :=g1 Vg2 g1<0(g1=0 - - 0340 RR
RX gl :=g1 ¥q2 g1<0|g1=0 - | - 0380 | RR
Supp.1 5

MNEMONIC EFFECT N czcmomcc):xs oF | HEX | FORMAT |cLASS
FLDt fa:=fq fa<0_ | fa=0 - — |8000 A F
FADt fa:=fa+fq fa<0 | fa=0 r — {8400 A F
FSBt fa:=fa-fq fa<0 | fa=0 r — |8800 A F
FCPt form fa - fq and set N,Z,CA,OF fa<lfq | fa=0 - - |8c00 A F
FMt ea:=fa fq ' ea<0 | ea=0 r ~ |9400 A F
FDt Cfa:=fatfq fa<0 | fa=0 r — 19800 A .| F
FSTt fq:=fa fa<0 | fa=0 - - 9Cc00 A F
ELDft ea:=eq ea<0 | ea=0 - - A000 A E
EADt ea :=ea+eq ea<0 | ea=0 r - A400 A E
ESBt ea :=ea-eq ea<0 | ea=0 r - A800 A E
ECPt form ea - eq and set N,Z,CA,OF ea<eq | ea=eq. - - ACO00 A E
EMT ea:=ea « eq ea<0 | ea=0 "r - B400 A E
EDt ea:=ea+eq ea<0 | ea=0 r - B800 A E
ESTt eq:=ea- ea<0 | ea=0 - - BCOO A E
FIXt wq := integer part c?f ea; q<0 q=0 r _ 8000 A W

ea :=remainder :

FLTt ea := floating representation of wq ea<0 | ea=0 - - 9000 A E

FNEG ea = —ea ea<0 | ea=0 - = 1702 L o]

SIm Set Integer Mode (FM :=0) - - - {—= |1700 L c

SFM Set Floating Mode (FM := 1) - - - = 1701 L C

AINT Acknowledge Interrupt _ — - - 1C00 L C

PERM Permit Interrupts - - - - 1C01 L €
“INH Inhibit Interrupts - - - - 1€C02 | L C

TERM Terminate Interrupt Level - - - |- 1C03 L c

SINT Software Interrupt - - - - 1C04 L c

IN input from Channel N S, Ss Se | Sy 1D00 L I/0

ouT Output to Channel N Ss Ss S¢ | Sy 1D40 L 1/0

SFN Switch to Full Nucleus - - - 1202 L C

CALL 1000 L

ICBR Nucleus Instructions — See 1100 L

SEG CPU Nucleus Manual 1300 L

SEM 1400 L

t Instructions available if FM=1 only.

6 Supp.1

(1)

(2)

Notes
The class of a Format A or Format L instruction determines how its D field is used:-

FORMAT A CLASS B - D used to Form Byte Operaﬁd Address

— D used to Form Halfword Operand Address

D used to Form Fullword Integer Operand Address

D used to Form Short Floating Point Operand Address
D used to Form Long Floating Point Operand Address

mTE X
|

FORMAT L CLASS LB — D used as Literal Byte Operand
BR — D used as Signed displacement
SH — D used to define Shift operation
BIT- D used to define Bit operation'
C — D used to further define operation

* Condition Settings

tn the tables, the following symbols are used
Al Conditions :— — indicates that the conditions bit is unaffected by the operation.
N Condition:— r<0 indicates that the bit is set to the true sign of the result.

a<0etc. indicates that the bit is set to the sign of the result register. This may
differ from the true sign if overflow has occurred.

a<hq etc. indicates that the bit is set to indicate the true result of the comparison.

CPBS only r<0 indicates that the bit is set to indicate the result of the last
byte comparison performed.

Z Condition:— a=0 etc. indicates that the result register became zero as a result of the operation.
a=hq etc. indicates that the two operands were equal.
TSTB only bit =0 indicates that the selected bit was zero.

CPBS,SCBS only end indicates that the bit is set if the operation continued to
completion.

OF Condition:— r indicates that the bit is set if the result overflowed. In such cases the true
' result and the result placed in the result register differ.

ST only hq#® a indicates that the bit is set if the integer in a cannot be
represented in 16 bits. ’

Note that once set, the OF bitcan only be reset by the BOF instruction.

CA Condition:— r indicates that for Add operations, Carryout was produced, and for
Subtract operations, a Borrow was produced.

Supp.1 7

uoia
X3H QUIHL
.v_ 11910
4 3 a 2 a v 6 8 L 9 g v £ z 1 0 X3H GNOO3S
A -~
i+ 96+ 08+ o+ v+ ze+ 91+ z i+ 96+ 08+ v9+ 8+ e+ L+ Al 73 g L £
L+ 96+ 08+ 9+ 8+ ze+ 9+ S Tii+ 96+ 08+ 9+ 8t+ e+ 9i+ 1 3 v 9 z
ovz+ wer 80z+ 6+ oL+ 0oL+ v+ 8T+ ZTW+ 96+ = 08+ o+ s+ Ze+ 9L+ 19 a 6 g }
o+ X1z o+ XIA 9+ IS g+ X o zZer 9+ 19 Xz XA X9 \xa 0) 8 ¥ 0
g o : i |
300W \ \ 218 288 | zva za1
: AlS Ags | Aav AQl
paxspul = X paxapul X ‘Bay aseg X1S %a X XN
Wwaipu| = | S
.mwm mem = |— Xd0 X8as xXav Xai
1sa/mis| aa/ma | wamw | LT4/mN
dod/mdo| asa/Mes|avamav |arman
; : 18ans | oava | wam | xian
“LN3W3OV1dSI0 WHO4 OL 11910 X3H HLYNO4 aaV / e / /
‘IGOW ONISSIHAAY OGNV NOILONNS INII3a S3T8vL vV IVNU04 $03/d0| 8sa/es | avajay | ara/at
SONI ne. 8 | zww
Wis nwa AVH
8is | sax | sso 8N
80 | s33a | xan aa
NOILINNI
ANIWIOV14SIQ INII3A SLIDI X3H HLHNOS ONY GHIHL — SNOILONYASNI H3HLO 11V
318VL 2:VIHJOUdV OL Y343 ‘SNOILONYLSNI 3SIHL HOHO
00 ='SLIDIA X3H HAYNO ONV QHIHL ‘SNOLLONYLSNI 3SIHL HO4, TGNV E IVWEG3
11910 X3H 15Y13
3ui pue youesg youeag
1za1 | zes | zav | Lix3s {@)xHs| IAes | aav| | 1aa1 | LSHW xa W[e %40 | Ixes | Ixav | Ixad
VONG | dJ08 | dN8 a8 zNg | za NNg Ng | (®)se 1a w e 140 8s oy | an
12001 L03d | ® o | @N| A ®ws| | uved |(Dosm @ we| ©xugl[@was| ©o3s | ®amx | @ e ©1v0
952- zis- 9gz+ 1@ | o8z zig- 952+ 8 ® uu Lvwsos
L9ta
X3H ANODIS—8» 4 3 a 2) v 6 8 L 9 g v £ z t 0

TABLE 1

Supp. 1

8

FUNCTION

0 RADC | RSBC
1 RNA RADI RSBI RI
2 RLD RAD RSB RCP
3 RN RO RX REGISTER G1
f 0 4 8 c 0 A
1 5 9 D B | X
2 6 A E L S
3 7 B FJ Y z REGISTER G2
SECOND THIRD HEX 0 8 0
HEX DIGIT
DIGIT 1 9 A
2 A B
3 B X
4 c L
FORMAT RR 5 D S
6 E Y
7 F z
——
FOURTH HEX
DIGIT
" TABLE 2

Supp. 1

9

SHL - BITL -
SHX BITX BS CALL SEG SEM ICB
TSTB " " " "
0 SBAR TSTX | MBS EXIT | LCST REL | ICBR IN
SBRX —
1 +16 //
2 |sBAL sTAaT | ces | coum 7| icsL
SBLX — —
3 +16 /
4 ISR cPBS ~| RSEN | scsT |cowm ouT
SRX I ' :
5 +16
6 |sL SEND | LHSR -
SRX
7 +16
8 |sAL TRBS ~ | RW/PIN”
o [R% TGLB
+16 | 161 x
PLCB
A
sLC PLOX LWCB
g [SLCX SETB
+16 | gETX
c sces " [TRIP/OUT
b |SXRX
SXR
E SXLX CLRB *
SX| CLRX LWT
F
THIRD HEX
DIGIT
* FOR THESE INSTRUCTIONS, FOURTH HEX DIGIT =0,
" FOR SHL/SHX, ADD 4TH HEX DIGIT TO FORM NUMBER OF PLACES OF SHIFT.
FOR BITL/BITX, 4TH HEX DIGIT IS BIT NUMBER.
FOR SEG (EXCLUDING LHSR), 4TH HEX DIGIT DEFINES SEGMENT. MUST BE IN
THE RANGE 0 = 3.
FOR 1/0, 4TH HEX DIGIT DEFINES CHANNEL.
FOR CALL INSTRUCTIONS STAT, RSEN, SEND, 4TH HEX DIGIT DEFINES NEXT STATE.
0 - FREE
1 — RUN
2 — WAIT/PASS
3 — WAIT \
4 — FREE CONDITIONALLY
e 7 - WAIT'CONDITIONALLY
10 Supp.1’

/O (Basic Test)

TABLE 3

INT KEY MISC
0 AINT RK SiM
1 PERM | HRK SFM
2 INH SFN FNEG
3 TERM
4 SINT
5 —F
FOURTHHEX THIRD HEX DIGIT=0
DIGIT

TABLE 4

Supp.1

1

