(

(

-

LA S

Nascom 2 Microcomputer
DOCUMENTATION

The Mascom Microcompuders Divigian of Lucas Loge

<
the vight to amend|delete any specification m ths brochure ¢
accorgance with fulure developmenis

E=]

£ Copvright Lucas Logic Limited

Nascom Microcomputers

Division of Lucas Logic Limited
Welton Road Wedgnock Industrial Estate
Warwick CV34 5PZ

Tel: 0926 497733 Telex: 312333

PF/019

3]
I
Lak

Section 5: BASIC Programming Manuals

Introduction

Introduction to this mannal
a. Conventions

b, Dafinitions
Modes of Oparation
Formats

a, Lines

k. REMarks

o, Error Messages

Editing - elemeutary provisions
a. Correcting Single Characters
b. Corrceting Lines

. Correcting Whole Programs

m Input with Nas-sys

Expressions and Statements

Exprassions
i. Constants

b. Variables

C. Array Variables - the DIM Statement
d. Operators aud Precedenca

e, Logical Operatiocns

f. The 1ET Statement
Branching and loops
a. Branching
1; GOTD

2 I1F...THIEN

3} 0N, . . GOTO

b. Loops - FOR and NEXT Statements
c, SBubroutines - GOSUB and RETURN Statewments
d. Memory Limitations
input/Output
a, INPUT
h. PRINT
¢. DATA, READ, RESTORE
d, CSAVE, CLOAD
e, Miscellaneous
1! WALT
2 PEEK, POKE
35 DEEK , DGKE
4 oUT, INP
Functions

Intrinsic Functiona
User-Defined Functions - the DEF Statement
Errors
Strings
String Data
String Operations
a. Comparison Operators
b. String Expressions

.
String Functions

Additional Ccmmands
a Monitor

a,
b. Width

C, CLS

d, SCREEN

a, LINES

f. SET

2. RESET

h, POINT

i, Data Input with Nas-sys
S Printer Support

k, Aborting programs

G
(-

=l
N

wn
3]

LAtnen

oL
-
]

Lists apd Directories

Commands

Statements
Intrinsic Functions
Special Characters
Error Maessagas
Reserved Words

7. Running Basic

Appendices

AL ASCIT Character Codes

B, Speed and Space Hints

c, Mathematical Functions

D, Kascom BASIC and Machine Laonguage

E. Using the cassette Interface .
F. Converting BASIC Programs Not written for XNascom Computers
G, Storage Used)

I. Useful Books

I. Useful Routines

J. Single character Input of Reserved Words

Index

5.12
5.12
5.12
5.14
5.15
5.15
5.16

5.18
5.1%
5.20
5.21
5.22
5.23
5.24
5,25
5.26
5.27

PF/019 Page 5.1

1.

1-1

Issue 2

INTRODUCTION

Nascom SK Basic is based on Microsoft Basic, which has become the industry standard, and offers
L s " e ot L ST T - !
a high degree of compatabiiity with programs published in books and wmagaxines,

It offers 7-digit floating point numbers io the range 1,%0141E38 1o £,9387E-35, full trigunometrie
functions, string handling and Pi) control, User functions can be written in machine code or
Baszic to provide additional flexihility,

In addition, a number of extra features have lLeen included:

- it works with Nashug T2, T4 and Nas-sys

- with Nas-sys, provides powerful on screen, in line editing raecilities for data and programs.

- it has clear screen and cursor positioning fupnetions for screen formatting.

- improved LIST command for use with Nascom digplay,

- support of printers or terminals attached e.g, via serial interface,

- improved cussette handling with program identification and error checking ol both programs
and data (many othaer systems can allow data to he misread)

- suppori ol the Nascom graphics options using SET, WESKET and PFOINT commands

Introduction to this manual

This manual doscribes the features offered by Nascom 5K Basic., It is wnot imntended to be used

as an introduction to programming in Basic - many such books are availabhle elsewhere (ssoe
Appendix H)

a, Conventions, For the sake of simplicity, some conveutions will be followed in discussing
the features of the Nascom BASIC language,

1. Words printed in capital letters must be writtem exacily as shown. These are mostly
names of instructions and commands,

2, Items enclosed in angle brackets (<>) must be supplied as explained in the text, ILtems
in square brackets (£ 7) are optional. Items in both kinds of hrackets, [<W»], for example, ate
to be supplied if the optional feature is used. Items followed by dots (...) may be repeated or
deleted as necessary.

3, BShift/ or Control/ followed by a letter weans the character is typed by holding down
the Shift or Conirol key and typing the indicated letter,

4., All ipdicated punctuation must bhe supplied. :

b, Definitions, Some terms which will become importani are as follows:

Alphanumeric character: All letters and pumerals taken together are called alphanumeric
characters,

Enter, Newline or Carriage Return: Refers both to the key on the terminal which causes the
carriage, print bead or cursor to move to the beginning of the next line and to the command
that the return key issues which terminates a BASIC line,

Command Level: After BASIC prints OK, 1t is at the command level, This means it is ready to
accept commands.

Commands and Statements: Instructions in Nascom BASIC are loosely divided into twe elases,
Commands and Statements, Commands are instructions normally used only in direct mode (see Modes

of Operation, section 1-2}, Some commands, such as CONT, may only be used in direet mode since
they have no meaning as program statements, Some commands are not normally used as program state-
mants hecause they causs a return to comwand level., But most commands will find occasional use

as program statements, Statements are instructions that are normally used in indirect wode,

Some statements, such as DEF, may only bhe used ia indirect mode,

Edii: The process of deleting, adding and substitutinsg lines in a program and that of preparing
data for output according to a predetermined format will both be referred to as "editing". The
particular meaning in use will be clear from the context.

Integer Expression: An expression whose value i4 truncated to an intsger, The components of

the expression oneed not be of integer type.

Reserved Words:; Some words are reserved by BASIC for use as statements and commands, These are
called reserved words and they may noi be used in variable or functicer names,

String Literal: A string of characters enclosed by quotation marks (") which is to be input or
output exactly as it appears. The guotation marks are not part of the siring literal, nor may
a string literal contaln quotation marks., {""HiI, THERE"" is not legal,}

Type: While the actual device used to enter inforwation into the computer differs from system
to system, this marual willl use the word "type" to refer to the process of entry, The user
types, the computer prints. Type also refers to the classifications of numbers and strings,

Modes of Operation

Nascom BASIC provides for operation of the computer in two different modes, In the direct mode,
the statements or commands are executed as they are entered into the computer. HResulis of
arithmetic and logical operations are displayed and stored for later use, but the instructions
themselves are lost after execution, This mode is useful for debugging and for using BASIC

in a "calculator” mode for quick computations which do not justify the design and coding of

Joto nrasw»amo
L8 L9 pPIrOEIAlG.

]

he indirect mode, the computer executes instructions from a program stored in memory,
ram lines are entered into memory if they are preceded by a line pumber. Execution of the
ram iz initiasted by the RUN commands

13 NIEGs,

Formats

a. Iines, The 1ine is the Ffundamental unit of
Nascom BASIC line is as follows:

nnnnn {BASIC statementd [:<BASTC statement).,.]

A
fraa
b+l
n
L]
=]
=
e
P
[¥s)
=t
2
nd
-t
2
(]

PF/019 : Page 5.2

-5

Issue 2

Fach Nascom BASIC line hegins with a number, The number corresponds to the address of the line
io memory amnd indicates the order in which the statements in the line will be executed in the
program, It also provides for branching linkages and for editing. Line numbers must be in tha
range @ to 65520. A good programming practice is to use an increment of 5 or 10 betweon
successive line numbers to allow Tor insertions,

Following the line number, one or more BASIU statements are written. The lirst word of a state-
ment identifies the operations to be performed. 7The list of arguments which follows the identi-
fying word serves several purposes, Tt can contain {or rofer symbolically to} the data which
is to be operated upon by the statement, In some iwmportant imstructions, the operation to bhe

specified in the list,

specililed

verformed depends upown conditions or option

Each type of statewent will be considered in delail in sections 2, 3 and 4,

More tham one statement cabh be written on onoe line if they are separated by colons {:}., Any
number of siatements can be joined this way provided that the Iine is no moro ithan 72 characters
long, When used with Nas-sys in normal mode, linos cannot be greater than 48 characters.
However 72 character lines can be inserted by ewntering Monitor mode, issuing an X0 command and
returning to Basic by typing 2.
b. REMarks, 1n many cases, a program can be wore easily undersiood if it contains remarks
and explanaticns as well as the statements of the program proper. In Nascom BASIC, the REM
statement allows such comments to be included without affecting execution of the program. The
format of the REM statement is as follows:

REM (remarksy
A REM gtatement is noit execuited by BASIC, hut hranchin

statemonts are terminated by the carriage return or th

kxample: 100 REM DO THIS LOOF:FOR I=1T0]10 -the FOR statement will not be executad
101 FOR T=] T0 10: REM DO TOIS LOOP-this FOR statement will be executed

fil

tatements may link tinto it. RDEM

a
end of the line but not by a caolon.

f

o
=
G

¢, Errors When the BASIC interpreter detects an error that will cause the program to be
terminated, it prints an error message, The error message formats iam Nascom BASIC aro as
follows:

irect statement ?XX ERROR
Indirect statement 2XX ERROR IN nnnnon

XX is the error code or message (see section 6-5 for a list of error codes and messagas) and

nnnnnnnnnnnnn A Taash octatsamamdt hog d+g0 nwyn martiounlar
CUEAY

At o dha Tdma simtas achoaae +hoo
JHITED ES OO A100 HOUlioSYy WIGId Tf olro)Y oovulroa., LG SLaifloly &5 LS OWIO garui

pogsible errors ip addition to the general errors in syntax, These errors will he discussed
in the description of the 1ndividual statements,

Editing - elementary provisions

Editing features are provided in Nascom BASIC so that mistakes can be corrected and Teatures
can be added and deleted without affecting the remainder of the program, If necessary, the
whole program may be deleted.

The fellowing facilities are available with Nasbug T2 and T4 and Nas-sys in X0 mode (i.e.
supporting an external terminal),

a, Correcting single characters. If an incorrect character is detected in a line as it is
being typed, it can be corrected iwmediately with the hackspace key. Each stroke of the key
deletes the immediately preceding character. If there is no preceding character, a carriage

atnnrn 4o dgguad gnd B now linsg ig haso . o
raeturn is issued and 2 new line is hegun, Onco the unwantsd characters are removed, they can

be replaced simply by typing the rest of the line desired,
When RUBOUT {control Z) is typed, the previous character is deleted and echoed. Each successive
xt

RUBOIT prints the next character to bhe deleted. " Typing a new character prints the new character,
Example: 100 X==X ¥Y=10 Typing two RUBOUTS deleted the '=' and 'X' which

were subseguently replacaed by Y= .
b, Correcting linsgs, A line being typed may be deleted by typing an at-sign (@) instead

of typing a carriage return. A carriage return is printed automatically after the line is
deleted. Typing Control/U has the same effect,

c., Correciing whole programs, The NEW command causes the entire current program and all
variables to be deloted. NEW is generally used to clear memory space preparatory to entering
a new program,

Program Input with Nas-svs

When used with Nas-sys, the full range of editing facilities are available, and the line
dispiayed on the screen is passed to the Basiec interpreter by the Enier or Newiine key, In
addition to editing the current line, this allows you to list a program, edit lines on the
sereen and re-enter the updated lines, But note that data input is normally dealt with on a
character by character basis asg outlined in {-4, above, (see also 5}.

PF/019 : Page 5.3

Issue 2

+4 v o nalig
11 0i 845,

5
BASIC accept

m in floating point real numbers or strings as
4-1. Some examples

ceptahle numeric constants follow:

ﬁ
o .

exXp
stants. Nas
constants. See sectio
123

3,141

0,0436
1. 95E+05

=ow
-

Data input from the terminal or numeric constanis in a program may have any number of digits
up to the length of a lins (see sectionm 1-3a}. However, only the first 7 digits of a pumber
are significant and the seventh digit is rounded up. Therefore, the command

PRINT 1.234567890123
produces the fellowing output:
1.23457
0K
The format of a printed numher is determined by the following rules:
1. If the number 1s negative, a minus sign (-} is printed to the left of the number.
If the numbher is positive, a space is printed,.
2, If the absolute value of the number is an integer in the range 0 tc 999999, it is

printed as an integer.

3. If the absolute value of the number is greater than or sgual to .01 and less than
or equal to 999999, it is printed in fixed point netation with no exponent,

4, If the numher does not fall into categories 2, or 3 scientific notation is used,

The format of 501Bnt1flc notaticn is as follows:

Where S stands for the signs of the mantissa and the exponent {they need not be the same, of
course), X for the digits of the mantissa and T for the digits of the exponent. FE and D may
be read "...tines ten to the power...." Non-significanl zeros ars suppressed in the wantissa
but two digits are always printed in the exponent. The sign convention in rule 1 is followed
for the mantissa. The eXponent must be in the range -38 to +38., The largest number that may
he represented in Nascom BASIC is 1,70141E38, the smallest positive number 1s 2,9387VE-38, The

following are exawples of numbers as input and as output by Nascom BASIC:

Number Nascom BASIC Gutput
+1 1

-1 -1

6523 6523

1E20 1E20
-12.34567E-10 —1.23456E~09
1.234567E-7 1.23457E-07
1000000 1E+06

.1 A

.01 .01

. 000123 1.23E-04
-25,460 ~25,46

In all formats, & space Is printed after the number,

b. Variables.

1. A variahle represents symbolically any number which is assigned to it., The valus of
a variable wmay be assigned explicitly by the programmer or may be assigned as the result of
calculations in & program. Before a variahble is assigned a value, its value is assumad to he
zero, Ip Nascom BASIC, the variable name may be any length, but any alphanumeric characters
after the first two are ignored, The first character must he a letter, No reserved words may
appear as variable names or within variable names. The following are examples of legal and
itlernl BASTC variahlag:

egn a8, FaRrianiag

Legal Illegal

A %A (first character must be alphabetic)

Z1

TP T0 (variable names cannot be reserved words)

PETGE

COUNT RGOTO {variable names cannot contain reserved words)

A variable wmay also represent a string. Use of this Teature is discussed in section 4,
Internally, BASIC handles all uumbers in bipary, Therefore, some B digit single precision
numbers may he handled correctly,

C. Array Variables, It i=s often advantageous to refer te several variables by the same
name, Ip matrix calculations, for example, the computer handles eaeh element of the matrix
separately, but it is convenient for the programmer to refer to the whole mairix as a unit,
For thixg purpose, Nascom BASTC 'n'r-nv'-r’lnﬂ ﬂll'l’\ﬂr\'l“1'r|+.nﬂ var'-a'h'ln;u or arrays, "I‘ha form of an arra

variable is as follows; o o T o o o
VV(<subseripty [, {subseripty.,.])

Where VV is a variable name and the subscripis are integer expressions. Subscripis may he
enclosed in parentheses or square brackets, Ap array variable may have as many dimensions as
will it on a single line and can be accommodated in the memory space availablae, The smallest
subscript is zero,

PF/019 Page 5.4
Issue 2

Examples:

A(5) The sixth element of array A, The Tirst element is A(0),

ARRAY(I,2%J} The address of this element im a two-dimensional array 1s
determined by evaluating the expressions in parenthesas at
the time of the vreference to the array and truncating to
integers., If I=3 apnd J=2.4, this refers to ARHAY(3, 2).

The DIM statement allocates storage for array variables and sets all array elements {0 zero,
.

DIM VV{¢subscript>[,{subscripty...})

Where VV is & lezal variable name, Subscript is an integer expression which speci
largest possible subscript for that dimension. Eack DIM statement may apply to wo
one array variable, Some examples follow:
113 DIM A(3), DE(2,2,2)
113 DM R2 (&), 35105
115 DIM @i{X), 2 (2+1) Arrays may be dimensioned dynamically during program
execution, At the time the DIM is executed, the axpression
within the parentheses is evaluated and the results truncated
to integer.
If no DIM statement has been executed before an array variable is found in a program, BASIC
agsumes the variabie to have a waximum subseript of 1o {11 elements) for each dimension in the
reference. A BS or SUBSCRIPT OUT OF RANGE error message will be issued if an attempt is made
to reference an array element which is outside the space allocated in its associated DIM state-
ment. This can occur when the wrong oumber of dimensions is used in an array element reference.
For example:
30 LET A(1,2,3)=X when A has been dimensioned by
10 DIM A(2,2)

3
1
I

&

A DD or REDIMENSIONED ARRAY error occurs when a DIM statement for au array is found after that
array has been dimensioned, This often occurs when a DIM statement appears after an array has

been given its default dimension of 10.

TAS T . 417

d, Operators and Precedence, Nascon BASIC provides a full range of arithme
operators. The order of execution of operations in ap expressior 18 always acce
precedence as shown in the table below. The order can be speciiied explicitly by the use

parentheses in the normal algebraic fashien.

Table of Precedencs

Operators are shown here in decreasing order of precedence. Operators listed in the same entry
in the table bave the sasme precedence and are executed in order from left to right im an expression,
1. LExpressions enclesed in parentheses () .
2, 4 exponentiation, Any mumber to the zero power is 1, Zero to a negative power causes
a /0 or DIVISION BY ZER0 error.
3. - negation, the unary minus operator,
4y, %,/ multiplication and diwvision,
5. +,-~ addition and subtraction
8 relational operators

= aqual

<» not egual

< less than

¥ greater than

¢=,=< less than or equal to
¥=,=7 greater than or egual to

7. NOT logical, bitwise negation
B. AND logical, bitwise disjunctiion
q, OR logical, bitwise conjunction

Relational operators may be used in any expressions. Relational expressions have tha value
eitker of True (-1) or Falss (0).

a, Logical Operations. Logical operators may be used for bit wanipulation and Boolean
algebraic functions, The AND, OR, NOT, operators convert their arguments into sixteen bit,
signed, twn's complement integers in the range -32968 to 32767. After the operations are
performed, the result is returnhed in the same form and range. If the arguments are not in this
range, an FC oy ILLEGAl, FUNCTION CALL error message will he printed and execution will be termin-
ated. Truth tables for the logical operators appear below, The operations are performed bitwise
that is, corresponding bits of each argument are examined and the result computed one bit at a
time. In hinary operations, hit 7 is the most significant bit of a byte apd bit 0 is the least

gignificant.
AND vy X AND Y

1 1 1

1 0 0

0 1 0

QO 0 0
OR

X Y XO0R Y

i 1 1

1 0 1

g 1 1

i} 0 0
NOT

X NOT X

1 0

o 1

Pags 5.5
Tasuea 2
Some examples will serve to show how the logical operations work:

63 AND 16=16 63=binary 111111 and 16=binary 10000, so 63 AXD 16=16

15 AND 14=14 15=binary 1111 and {4=binary 1110, so 15 AND 14=binary 1110=14

-1 AND 8=8 ~T=bipnary 17111111111111117 and 8=bipary 1000, so -1 AND &5=H

4 OR 2=6 4=binary 100 and 2=hinary 10 so 4 OR 2=binary 110=6

10 OR 10=10 binary 1010 OR'd with itself is 1ol0=10

~1 OR -2=_] —t=binary 111111111114111% and -2= 1{11111111111110, so -1 OR -2=-1

NOT 0=-1 the hit comp]ement of sixteen #eros is sixteen ones, which is the two's

complement representation of -7,
NOT X=—(X+1} the two!s complement of anyv number is tho bit complement plus one.

A typical use of logical operations is *masking!, testing a binary number for some predeter-
mined pattern of bits, Such numbers might come from the computer's input ports and would then
reflact the condition of some external device. Further applications ol logical operations will
be considered in the discussion of the IF statewment,

f. The LET statement. The LET statement is used to assigh a value to a variable, The form
is as follows:

Where VV is & variable name and the expressionis any valid Xascom BASIC arithmetic or logical
or string expression., Examples:
1000 LET v¥=X

110 LET I=I+7 +the '=' sign here means 'is replaced by'

Tha word LET in a LET statement is optional, so algebraic equations such as: 120 V= 5%{X+2)
are legal assignment staitements.

A SN or SYNTAX ERROR message is printed when BASIC detects incorrect form, illegal characters

in a line, incorrect punctuation or wmissing parentheses. An OV or OVERFLOW error occurs when the
resuli of a calculation is too large to be represented by Nascom BASIC!'s number formats. All
pumbers must be within the range 1E-38 to 1.,70141E38 or -1E-38 to -1.70141E38, An attempt to
divide by zero results in the /0 or DIVISION BY ZERC error message.

For a discussion of strings, strimg variables and string operatlions, see section 4.

Branching, Leops and Subroutines

a, Branching. In addition to the sequential execution of program lines, BASIC provides
for changing the order of execution., Thia provision 1s ealled branchking and is the hasis of
programmed decisioc making and loops., The statements in Nascom BASIC which provide for
branching are the GOTO, IF,,.THEN and ON,.,.GOTO statements,
1. GOTO is an unconditional branch. Its form is as follows:
GOTO dnmmmmdy
After the GOTO statement is executed, execution comtinues at line number mmmmm
2. IF...THEN is a conditional branch., Its form is as follows:
;r(axpress;ﬁﬁ}THEH\mmmmru
Where the expression is a valid arithmetie, relational or logical expression and wmommm is a
line number. If the expression is evaluated as non-zero, BASIC continues at line mmmem, Gither-
wise, axecution resumes at the next lise after the IF,, . THEN statement., An alternate form of
the IF,,,THEN statement is as follows:
IF¢{axpressiony THEN (statement}
Where the statement 1s any Nascom BASIC statement, Examples:
10 I A=10 THEN 40 Ti the expression A=10 is true, BASIC branches to line 40.
Otherwise, sxecution proceeds at the next line.
15 IF A¢B+C OR X THEN 100 The expression after IF is evaluated and if the value
of the expression is non-zero, the statement branches to 1line 100
Otherwise execution coniinues on the next line,
20 IF X THEN 25 If X is not zero, the statement branches to line 25
30 IF X=Y THEN PRINT X If the expression X=Y 1is true (its wvalue iz non-zero},
the PRINT statement is executed, Otherwise, the PRINT statement is not execunted,
In gither case, execution continues with the ltine after the IF...THEN statement.
35 - IF X=Y+3% GOTC 39 Equivalent to the corresponding IF...THEN statement, except
that GOTO must be followed by a line sumber and not by another statement,
3, -ON,, . GOTO provides for ancother tyvpe of conditional branch, Tits= form is as follows:
0N<prression)GOT0(113t of 1line numhers)
After the value of the expression is truncated to an integer, say I, the statement causes BASIC
to branch to the line whose number is Ith in the 1list, The statement may be followed by as many
iine numbers as will it op one Iipne., If I=0 or is greater than the number of Iines in the iist,
execution will continne at the next line afiter the ON,,,GOTO statement. T must not be less than
zaero or greater thanm 255, or an FC or ILLEGAL FUNCTION CALL error will result.

b. Loops. It is ofteun desirable to perforw the same caleulations on different data or
repetitively on the same data, For this purpose, BASIC provides the FOR and NEXT statements.

The form of the FOR statement is as fTollows:
FORSvariable) = ¢XDTO{Y STEP (%]

where X,Y and 7 are expressions, When the FOR statement is encountered for the flrst time, the
expressions are evaluated., The variable is set to the value of X which is called the initial
valua, BASIC then executes the statements which follow the FOR statement in the usual manner,
When a NEXT statement is8 encountered, the step Z is added to the variable which is then tested
against the final value Y, If Z, the step, is pesitive and the variable is less than or equal
to the final value, or if the step is negative and the variable is greater than or equal to the
final value, then BASTIC branches back to the statement 1mmed1ately following the FOR statement.
Utherwise, execution proceeds with ithe statement following the NEXT, If the step is not speci-
fied, it is assumed to he 1,
Examples:

10 FOR I=2 TO 11 The loop is executed 10 times with the variable I taking on

each intezral value from 2 to 11.

2-3

Page 5.6

Issue 2
200 FOR V=1 TO 9.% This loop will execute 9 times until V is
) greater than 9.3
30 FOR V={10*N TO 3.4/% STEDP SQR(R} The initial, final and step exprsssions neod

not be integral, but they will be evaluated
only once, beforae looping begins,
40 FOR V=0 TO 1 STEP -1 This loop will he executed 9 times,
FOR...NEXT loops may be nested. That is, BASIC will exacute a FOR.,.NEXT loop within the con-
taxt of another loop. 4An example of two nested loops follows:
100 FOR I=1 TO 10
i20 FOR J=1 TO I
130 PRINT A(1,J)
140 NEXT J
150 NEXT T
Line 130 will print] element of A for I=1, 2 for I=2 and so on, I loops are nestad, they
must have differeunt loop variable names. The XNEXT statoment Tor the inside loop variahble
(J in the example) must appear before that for the outside variable (I}. Any number of levels

of nesting is allowed up to the limit of available memary,

The NEXT statemeni is of the form:

NEX'I f¢variabled [, (variable>...]]
Where each variable is the loep variable of a FOR loop Jor which the NEXT statement is the end
point. MNEXT without a variable will match the most recent FOR statewment. In the case of nosted
loops which have the same end point, a single NEXT statement may bve used Tor all of them, Tha
first variable in the list must be that of the most recent loop, the second of the next wost
recent, and so on, IFf BASIC encounters a XEAT statement before its corresponding FOR statement
has heeun executed, an NF or NEXT WITHOUT FOR error message is issued and execution is terminated.

c. Subroutines, If the same operation or series of operations are 1o he performed in several
places in a program, storage space requirements and programming time will be minimized by the uss
of subroutines. A subroutine is a series of statements which are executed in the nermai fashion
upon being branched to by a GOSUB statement, Execution of the subroutine is terminated by the
RETTRN statement which branches back to the statement after the most recent GGSUB, The format

of the GOSUR statement is as follows:

GOSUB{line numberd
where the line number is that of the first line of the subroutine., A subroutine may be called
from more than one place in & program, and a subroutine way contain a call to another subroutine.
Such subroutine nesting is limited only by available wmemory. Subroutines way be braunched to
conditionally by use of the ON...GOSUB statement, whose form is as follows:

ON {expressiony GOSUB {list of line numbers)
Tha exscution is tha same as ON,..GOTO except that the line numbers are those of the first lines

of subroutines, Execution continues at the next statement after the ON, ..GOSUB upon return from
one of the subroutines.

d, oUT OF MEMORY errors. While negting in loops, subroutines and branching is not limited
by BASIC, memory size limitations restirict the size and complexity of programs. The OM or oUT
OF MEMOKHY error wmessage is issued when a program requires more memory than is availlable, See
Appendix B for an explanation of the amount of memory required to run programs,

el

X

noes=sved

Inpnt/Output

INPUT. The INPUT statemeni causes data input to be reguested from the terminal, The

rmat of the INPUT statement is as follows:

INPUT<1ist of variables)
The effect of the INPUT statement is to cause the values typed on the terminal to be assigned
to the variables im the 1ist. When an INPUT statement is executed, a question mark {?) is
printed on ihe temminal signalling & vequest for information, The operator types the reguired
numbers ot strings separated by commas and types "enter". If the data entered is invalid
{strings were entered when numbers were requested, etc,) BASIC prints 'REDO FROM START?' and
waits for the correct data to be entered, If wore data was requested by the INPUT statement
than was typed, ?? is printed on the termipal and execution awaits the needed data, If more
data was typed than was requested, the warning 'EXTRA IGNORED' is printed and execution proceeds.
After all the requested data is input, execution continues normally. at the statement following
the INPUT, An optional prompt string may be added to an INPUT statement,

INPUT ["¢prompt string»";J¢variable lisi>
Execution of the statemenit causes the prompt string to be printed befors the gquestion mark. Then
all operations proceed as above. The prompt string must be enclosed in double guotation marks

= Dwawnlar

(") and must be separated from the variable list by a semicolon {s). Example:
100 INPUT "WHAT!S THE VALUE";X,Y causes the following output:
WHAT'S TIE VALUE?
The requested values of X and Y are typed after the ? A carriage return or enter in response to
an INPUT statement will cause execution to continue with the values of the variables in the
varlable list unchanged.

a
fo

b, PRINT. The PRINT statement causes the Nascom to print data om the CRT or other terminal
as appropriate, The simplest PRINT statement is;
PRINT

which prints a carriage return. The effect is to skip a lipme. The more usual PRINT statement
PRINT 1ist of pxpressions

which causes the values of the expressions in the list to be printed, String literals may be

printed if they are enclesed in double guotation marks (").

The position of printing is determined by the punctuation used to separate the entries in the
list. Nascom BASIC divides the printing line into zomes of 14 spaces each, A comma causes

printing of the value of the next expression to begin at the beginoing of the next 14 column

zone, A semicolon (;) causes the next printing teo begin immediately after the last value

printed, If a comma or semicolon terminates the list of expressions, the next PRINT staiement
begins printing on the same line according to the conditlons above, Otherwise, & carriage
return is printed.

PF/019 : Fage 5.7
Issue 2

C. DATA, READ, RESTORE,

1. The DATA statement. Numerical or string data needed in a program may he written
nto the program statements themselves, input from peripheral devices or read lvom DATA state-
ents, The foxrmat of the DATA statement is as foliows:

DATACYistD
where the eniries in the lisgt are numerical or string constants separated by commas, The
affect of the statemeut is to store the list of values in memory in coded form for access by
the READ statement, Examples:
10 DATA 1,2,-1E3, .04
20 DATA "ARR"™, NASCOM

o~

Leading and trailing spacos in string values are supprossed unless the string is onclosed by
double quotation marks,
2, The READ statement. The data stored by DATA statements is accessed by READ state-

mants which have tha following form:
READ}1ist of variablesy

where the entries in the 1list are variable names separated by coumas. The effect of the READ
statement is to assign the values in the DATA lists to the corresponding variables in the READ
statement list. This is done one by one from left to right until the READ list is axhausted,
If there are more names in the READ 1ist than values 1n the DATA lists, ap 0D or OUT OF DATA
error message is issued, If there are more values stored in DATA statements +than are read hy
a READ statement, the next READ statement to be executed will begin with the next unread DATA
list eniry. A single HEAD statement may access more than one DATA statewment, and more than one
READ statement may access the data in a single DATA statement.
An SN or SYNTAX ERROR message c¢an result from an improperly formatted DATA 1ist., The line pumber
in the error message refers to the actual line of the DATA statewsnt im whiel the error occurred,

3. RESTORE statement, After the RESTORE statement is executed, the next piece of data
accessed by a READ statement will be the first entry of the first DATA list in the program, This
allows re-READing the data.

d, C5AVEing and CLOADing Arrays, Numeric arrays may be saved on cassette or loaded from
cassette using CSAVE¥* and CLOAD*¥ The formats of the statements are:
CSAVE* array namey
and
CLOAD* array namey
The array 1is written out in binary with four octal 210 header bytes to indicate the start ot data,
These hytes are searched for when ClLOADing the array. The number of bytes written is four plus
4% ¢humber of elementsy for the array
When an array is written out or read in, the eloments of the array are written cut with the lefi-
most subscript varying most gquickly, the next leftmost second, eto:
DIM A{]0)
CSAVE*A
writas out A(0),A{1),...4(10)
DIM A(10,10)
CBAVE*A
writes out A{0,0), A(1,0)...4A(10,0),4{10,1).,.4(10,10)
is possible to write out an array as & two dimensicemral array and read it
dimensional array, etc.

Using this fact, 1t

back in as a single mer

Nascom Basic also generates a sumcheck at the end of the data, If the sumcheck fails on input,
the message "Bad" is displayed and 1t is then possible to restart the program and try to read
the data again,

e, Miscellaneous Input/Cutput.)
1. WAIT, The status ef input ports can be moritored by the WAIT command whick has the
following format: R
WALITLI, > ,<K> 1]
whore 1 is the number of the port being monitored and J and K are integer expressions. The port
status is exclusive UORd with K and the result is ANDed with J, Execution is suspended until a
non—zero value results, J wpicks the bits of povt T to he tested and execution ig suspended mntil
thogse bits differ from the corresponding bits of K, Execution resumes at the next statement
after the WAIT, If K is omitted, it is assumed to he zeroc. I1I,J and K wust be in the range 0 1o
255. Examples:
WAIT 20,0 Execution stops until either bit 1 or bit 2 of port 20 are agual
to 1. (Bit 0 is least significant hit, 7 is the most significant,)
Execution resumes at the next statement.
WAIT 10,255,% Execution stops until any of the most significant 5 bhits of port
10 are one or any of the least significant 3 bits are zaro,
Execution resumes at the next statement.
2, POXE, PEEX Data may be entered into memory im hinary form witk the POKE statement

whoge format is ge followes
uuuuuuuuuuuu 18 a8 I0210WS

POKE (ZI,1>
where I and .J are integer expressions, POKE stores the byta J into the location specified by
the value of I, I must he less than 32768, J must be in the range 0 to 255. Data may be POKEd
LUTO memory above location 32768 hy waking I a negative number, In that case, 1 is computed by
subtracting 65536 from the desired address, To POKE data into loecation 45000, for example, I is
45000-65536=~20536, Care must be taken not to POKE data into the storage area occupisd by BASIC
or the system may bhe POKEd to death, and BASIC will have to be restarted,.

The complement?ry {unction to POKE is PEEK, The format for & PEEK call is as follows:

PEEK(I .
where I is an ipteger expression specifying the address from which a byte is read, I is chosen
in the same way as in the POKE statement., The value returned is an integer between 0 amd 255,
A major use of PEEK and POKE is to pass argumentis and resulis to and from wachine language .
subroutines,

PF/019

. DOKE, DEEK. These are double length verzions of POKE and PEEK i.e, J ma

the range TJr‘J—rf\—r to -32748 calculated as for I on previous page, The least S‘I.En‘if’ic

is stored in address I, and the most significant in I+1, so 1t can be used for stori
nuwbers or addresses Tor usa by machine code subroutines,

i, OUT, INP. The format of the QUT statement is as follows:

oUT £1,J%
where I and J are integer expressions, OUT seuds the byte signified by J to output
I and J must be 1n the range 0 to 255,

The INP funciion is called as follows
INP{KI>)

INP reads a byite from port I where 1 is an integer expression in the range 0 to 255.
20 IF INP{J)=16 THEN PRINT "ON"

Page 5.8
Issue

¥ be in
ant byte
ng 16 bit

port I.

Example:

PF/019 : aga .
Issue 2

FUNCTIONS

Nascom BASIC allows functions to be referemced in mathematical function notation, The format
af a function call is as follows:
{uame} {<argument?y)
whare the name 1s that of a previously defined Tunction and the argument is an expression, Only
one argument is allowed, Function calls may be components of expressions, so statements like
10 LET T={F*3IN(T})/P and
20 C=SQR{AT2+1342+2%A%¥B*COS(T})
are legal,

Intrinsic Functions

Nascom BASIC provides several frequently used functions which may be called from any program
’ insic ti

P . =y L LY R vy - = e - i £
without further definition. For a list of intr seg section 5-3.

User-Defined Functions

a, The DEF statement. The
1ist of intrinsic funections by
follows:

DEF ¢function name}{<variable name))=<expressiony
where the function name must be FN followed by a legal variable name and &
name. The dummy variable represents the argument variable or value in the function call, Only
one argument is allowed for a user~defined function, Any exXpresgion may appear on the right
gide of the eguation, but it must be limited to one line, User-defined string functions are
not allowed. Examples of valid functions are:

10 DEF FNFTOC({T)={T-32}*5/9

12 DEF FNRAD(DEG)=3.14159/180%DEG When call

o +

[I T 1 o wdiabla
auiity VELavie

PUNpE T

g vulm

d with the measure of an angle in dogrees,
a rod

ian equivalent,

a
b 8
amant with the seme name, A DEl state-
be called.

nguage subroutines, See appendix D

A function may be redefined by executing another DEF stat

a
ment must be executed bafore the function it defines may
1

T Mha YRR Funetdion allowe calls to assambly
¥

L, Uoan, The USR functiohn 8iiows CAllEs Lo A=ssemDI A

Errors
An FC or ILLEGAL FUNCTION CALL error results when an improper caill is wmade to a functiom, Some

places this might occur are the following:

A negative array subseript. LET A{-1)=0, for example.
An array subscript that is too large (>32767)
Negative or zerc argument for LOG

. Negative argument for SQR

. A4B with A negative and B noi an integer.

. A call to USR with no address patched for the machi a
7. Improper arguments to MID$, LEFTS, RIGHET$, INP, OUT, WAIT
STRINGS, SPACE$ or ON.,,.GOTO,

An attempt to call a user-defined function which has not previously appeared in a DEl statement
will cause a UF or UNDEFINED USER FUNCTION error.

A ™ or TYPE MISMATCH error will occur if a fuunction which expects a string argument is given
a numeric value or vice-versa,

T

Sl o W [=

ne lan

PF/01% Page 5.10

41

Issue 2

STRINGS

In Nascom BASIC expressions wmay either have numeric value or may be strings of characters.
Nascom BASIC provides a complete complement of statements and functions for manipulating siring
data, Many of the statements have already been discussed so only their particular application

any

to strings will be treated in this sectioun.

String Data
A string is a list of alphanumeric characters which may be from 0 to 255 characfers in iepgih.
Strings may he stated explicitly as constants or referred to symbolically by variables, String
constants are delimited by gquotation marks at the heginning and end, A string variahle naume
ends with & dollar sign (§). Examples:

A$="ABCD" Sets the variable A$ to the four character string "ABCD"

BO$="14A/56" Sets the variable B9 to the six character string "4/ 56"

FOOFOO$="E$" Sets the variable FOOFOO$ to the two character string TES"

Strings input to an INPUT statement veed not be surrounded by guotation warks,

String arrays may be dimengioned exactly as any other kind of array by use of the DIM statement.
Each element of a string array is a string which may be up to 254 characters long. The total
number of string characiers in use ai any poiut in the exsctbion of & program must noi excead
the total alloecation of string space or am 0S8 or OUT OF STRING SPACE error will result, String
space is allocated by the CLEAR command which is explained in section 6-2,

String Operations

a. Comparison Operators, The comparison operators for strings are the same as these for
nunhers; '

= sequal

<7 not equal

< “less than

-3 o
reater than

* =]

=¢{,¢{= less than or equal to

=%,7= greater than or equal to

Comparison is made character by character on the basis of ASCII codes ubtil a Aifference is
|t

found. 1If, while comparison is proceeding, the end of one string is raached, ithe sheorier string
ig econsidered to be smaller, ASCII codes may be found in Appendix A, Examples:

AL ASCIT A is 065, Z is 090

1<A ABCITI 1 is 049

TATITAY Leading and trailing blanks are significant in string literals,
b, String Expressions, String expressions are composed of string literals, stiring variables

and string function calls connected by the + or concatenation operator., The affect 0f the caten-
ation operator is to add the string on the right side of the operator to the end of the string on
the left. If the result of concatenation is a string more than 255 characters long, an LS or
STRING TCO LONG error message will be issued and execution will be terminated.

G, Input,/Output, The same statements used for inpui and output of normal numeric 4a
be used for string data, as well,

1. INPUT, PRINT. The INPUT and PRINT statements read and write strings on the terminal.
ings need not he enclosed in guotation marks, but if they are not, leadipg blanks will ba
gnored and the stiring will be terminated when the first comma or cclon is encountered, Examples:

10 INPUT Zoo0%, FOo$ Reads two strings
ap INPUT XJ Reads one string and as

o DTTLM TR ONCT MORDEY wints TwWo £
a4 PRINT Xp, "I, THERE Piiuts two girings, 1

second,
2, DATA, READ, DATA and READ statements for string data are the same as for numerie
data., For format conventions, see the explanation of INPUT and PRINT above.

igns it to the variable X§
di an 1]

all gpaces

String Functions

The format for intrinsic string function calls is the same as that
the list of string funciions, see section 6-3, Btring function nam

PF/019 Page 5.11

5.

2
ADDITIONAL COMMANDS Issue

Nascom 8K Basic has a number of commands which are not normally found in 8K Basics. 1In
addition to the DEEK and DOKE funections described in sectioen 2-3 facilities are provided %
eall the moniter, manipulate the Nascom display sereen, support add-on terwinals and print
and support graphiecs hardware.

a, MONITOR, This command transfers command to the monitor, Control can be restored to
Basie from Nas-sys by using the wmonitor command J for a complete re-start, or Z for a wamm
start preserving programs etc. Note that, if breakpoints are set in order to de-bug a machine
code subroutine, you should return to Basiec by issuing an EFFFA, ar EFFFD command as J and Z

de not set breakpoints, The monitor comwmand is often useful for issuing an X0 command to turn
on a printer.)

b WIDTH X. Input and output lines are normally assumed to be 47 characters long., However

this can be imconvenient when supporting & printer. WIDTH (N) changes the assumed line buffer
+rn N nhoro

o
v O Charac

]
arg
arg,

o wharn N 40 41 +ha vawnesn 1 +- acr
S, W4oI'e &K 418 1IN wat IMango 1 10 =32,

ter
On output to the serial port a newline will he generated automatically afiter N characters,
Newlines will be generated every 48 characters on the Nascor display in addition to an additiocpal
one altor N characters. ’

Op input, tho assumed line input buitfer will ke N or 72 characters, whichever is the longer,

When entering data or programs with Nasbug T2 or T4, an internal newline will be generated after
47 characters too, When entering programs under Nas-sys normal mode the line widtih is assumed to
be 45 characters and is unot affected by the WIDTH command,

Note that WIDTH does not affect the calculation which determines wheiher a number can be printed
in the current line zsae 2-1{a) This can be modified by

Ja
POKE 4163, {INT{N/14)~1)%14

where N is the line width in characters,

c, CLS clears the serssen under 211 monitors

d. SCREEN X,Y sets the cursor position to character position X, line Y, X is in the range
1 to 48, Y is in the range 1 to 16, Note that line 16 is at the top of the screen and is not
serolled, Line 1 is the next line down, and line 15 is at the hottom,

The Commands SCREEN 24,8

PRINT "HELLO"
will result in the message HELLO being printed at character position 24, line B.

Hote that with Nas-sys, only one character at & time can be printed on line 16, as the act of
incrementing the cursor pogition results in it being set to the bottom of the screen, but this
can be overcome by using the routine in Appendix I,

a, Lines N Normally, a LIST command will scroll five lines of program and wait for & newline
character to be typed on the keyboard before scrolling another five lines, This default of five
can ba changed by the LINES command e.g. to 14 to scan larger pages of program, or to & larger

numbor +tn 2llow ligtine to a garipl wwiotas
numLer L0 [4.0W 118581310 WO 8 S58rifl pPrinney

N must be in the range +32767 to -32768., Nezative numbers are treated as 65536 + N,

ng‘fg}lowing_;hrap'commands are for use with the simple azraphiecs option or Nascom | or Nascom 2
with The graphic characier set, Points can e set black or white on a grid 96 points wide by 48
points bigh, with 0,0 being in the top left hand corner,

f. SEI{X,Y) sets point X,Y hright

E. RESET (X,Y) if point X,Y is brighi, seis it dark

h. POINT tX,Y‘ an integer function which returns the value 1 if point X,Y is set bright,
0 if pot,

Note that X and Y must be in the range 0 to 95 and O to 47 respectively, Points with Y values
in the range 45-47 appear on the top (unscrolled) line, otherwise points will appear on appro-—
priate lines, descepnding as the value of Y increases.

The line which a point appears on is calculated as L= INT(Y}jz + 1

The character position a point appears on iz caloulated as C= INT{X:2) + 1
Characters other than the grapbic characters COH to FFH are overwritten y SET and ignored by
RESET and POINT,

i, Data Input under Nas-syvs, Under Nas-sys in normal mode, data is input one character at a
time, as it i¢ withk Nasbug T2 and T4, This allows INPUT gtatements to appear at any position on
the screen with complete Flexibility. Two additional modes of data input are provided.

DOKE 4175, -25
- =] P LT LAY R R =T | na h . | - [T . PUIN Fl P 1w T o . ~ n
Lallbes 4 Howiliilie 0 0o YAET4ALEU 010 1hCUL &OO O8TaE 1 LIpUuT usin TNneg Nas-svys aedlt Tea 1ras,

DOKE 4175, ~6670 P & v tne Teatire
causes similar results, but omits the newline, so the data input will include anything alse on
the lipne eg, the guestion wark and any prowmpt message printed by the INPUT statement. The addi-
tional characters can be stripped off by string wmanipulation in the usual way,

DOKE 4175, -6649

restores normal operation. Care should be taken when using these commands, as incorrect arguments
will cause the system %o crash., The values way chavge at & fuiture date with new issues of the
Basliec Interpreter,

Je Printer Support. In addition to pripters and terminals attached via the serial intertace,

printers can be interfaced to the PIO on the Nascom, Routines to drive such printers can be

included and switched on and off using DOKE and POKE commands (see appropriate monitor manual
for detailed information),

k. Aborting Programs, Escape (Shift and Newlipe) stops and aborts a running program (sea 6-54)
but ouly when typed on the Nascom keyboard. Generating am NMI (non maskable interrupt} has the
same effect. It is not possible to abort in this way from a cassette read or write operatiou,

but a similar effect can he achieved by hitting reset and entaring the "EY command,

PF/019 Page 5.12

h
1
| g

Issue 2

LISTS AND DIRECTORIES

Commands

Commands direct Nascom BASIC to arrange wemory and input/output facilities, to 1ist and edit
programs and tc handle other housekeeping details in support of program execution, XNascom
BASTLC saccepts commands after it wprints 'OK' and ig at command level, The tahla halow lists

acca commangs 41 L priLnteE L commar anla

the commanﬂs in alphabetical order,

Command

CLEAR

Sets all program vartables to zero

CLEAR(<expressiony]

Same as CLEAR but sets string space (see 4- 1) to the value of the exp
i8 given, string space will remain unchanged, Wheon Nascom BASIC is 5
sgat to 50 bytes,

CLOAlKstring expression}

Causes the program on cassetie tape designated by the first character of (STRING expressiony to
be loaded into memory. A NEW command is issued beforé the program is loaded,

CLOAD? <{string expressiony

Verifies that the program specified is loadable and error free,

CLOAD¥<{array named

Loads the specified array from cassette tape, May be used as a program statement,

CONT

Continues program execution after an Escape has been typed or a STOP or END statement has

been executed, Execution resumes at the statement after the break ocecurred unless input Irom

the terminal was interrupted. In that case, execution resumes with the reprinting of the prompt
(? or prompt string). CONT is useful in debugging, especially where an 'infinite loop! is sus-
pected, 4n infinite loop is a series of statements from which there is no escape. Typing Escape
causes 4 break inm execution and puts BASIC in command level, Dirsect mode statements can then bhea
used to print intermediate values, change the values of variables, etc. Execution can be re-
started by typing the CONT command, or by executing a direct wmode GOTO statement, which causes

Awacztion fo voeanuma at tha n.\nn—l-p-ina 1
sxecution to resume at the specifised linme number,

ET%

].b

w
o
-
e
o

]
@

=
ot
e
a

Execution cannot he continued il a direct mode error hes occurred during the break. Execution
cannot continue if the prograw was modified during the break.

CSAVE<string expressiond

Causes the program currently in memory to be saved on cassette tape under the name specified by
the First character of {string expression}.

CSAVE*{array nameé

Causes ihe array named to be saved on cassette tape., May be used as a program statement,

LIST

Lists the program currently in mewmory starting with the 10west numhered line. Listing is term-
inated either by the end of the program or by typing Escape (Shift & Newline)

LISTI{<1line number>)}

Prints the current program beginning at the specified line, The LIST command will print n lines
{where n is 5 or as modified by the LINES command) and wait for enter/newliné to be typed before
continuipng, Typing ESCAPE returns control to Basic,

NEW .

Deletes the current program and clears all variahles., Used before entering a new program,
Nl'll"l(in‘l'ﬂcrn'r' exnrassion

Sets the number of nulls to be printed at the end of each line, For 10 character per secend
tape punches, (integer expressionr should be >=3, For 30 cps punches, it should be =3, When
tapes are not bheing punched, (loteger expr0551od> should be 0 or 1 for Teletypes* and Teletype
compatible CRT's, It should he 2 or 3 for 30 cps hard copy printers, The default value is O,
Note that the Nascom monitors will normally ignore nulls on output, but a suitable delay can
usually be generated by setting NULL 255, Nulls are passed to user I/0 drivers.

RUN[({line sumher}>)

gtarts exeeution of the yprogram currently in memory at the line specified, If the line number
is omitted, execution begins at the lowest line number. '
Statements

The following table of statements i1s listed in alphabetical order. In the table, X and Y stand
Tor any expressions allowed in the version under consideration., I and J stand for expressions
whose values are truncated to intepers. V and W are any variable wnames. The format for & Nascow
BASIC line is as follows:

<nnnond - ¢statement) [:<statement)...]

where nannn is the lipne pumber

DATA DATA(list)

specifies data to be read by a READ statement, List elements can ke numbers or stripgs, List
elements are separated by commas,

DEF DEF FNV{<W>)=<x>

Defines a user-defined function. Function name is FN followed by a legal variable name, DefFfin-
itiong are restricted to one line (72 characters),

DOKE DOKE <I),<{T>

Stores J in memory location I awd I+1, IFf I or J are negative, they are interpreted as 65536 + I
or J, as appropriate.

* Teletype is a registered trademark of the Teletype Corporation.

PF/019 Page 5.13

Issue 2

DIM DIM, <DL, ... 10, ...]

Allocates space for array variables. More than one variable may he dimensioned by one DIN

statement up to the limit ol the line. 'The value of each exprossion gives the waximum suh-

geript possible, The smallest subscript is 0, Witheut a DIM statemeni, an array is assumad

to have maximum subscript of 10 lor each dimension referenced, For example, A(I,J) is assumed
nT

[P 1T I TR Foonrn Ay n\ 40 AfdA AnY Gmloon Aathaorerd oo ddwmons=ionocd in YTM a4 n+ mwnonn +
lJU HG\’U IC.I UJ.UI.IJUIII..-D, LA S,y LU A Uy iUy BN LESS Ub]IUleDU Wi guo RL 100G o =y & LAl oL LOmULI L.
END END
Terminates execution ot & program,

FOR FORSYS =X TOLY I STEREN]

Allows repeated execution of the same staltements, First execution sets V=X, Execution proceeds
normally until NEXT is encountered. 2 is added to V¥, then, IF Z{0 and V=Y, or 1if Z>0} and V=Y,
BASIC branches back to the statement after FOR, Otherwise, execution continues with the state-—
ment after NEXT,

GOTO GOTG(nnnnn>

Unconditional branch to lina number

GOSUR GOSUB{nnnmnny)

Ieconditional branch to subroutine hbeginning at line nnnnn,

IF. .. .GOTO TP Ky GOTOLnnnany

Same as IF.,.THEN except GOTO can only be followed by a line number and not another statement,
IF...T7EN IF{X>THENSY>

or IF¢XyTHEN statement>| :

8
If value of X0, Pbranches to line number or
at the line after the II'...THEN.

INPUT INPUTLVM <KW, . .1 :
Causes BASIC to request input from terminal, Values typed on the terminal are assigned to the
variables in the list.

amar
tatement after THEN, Otherwise, execution proceeds

LET LET {¥¥=(X?

Assigns the value of the expression to the variable. The word LET is opticenal.
LINES LINES AV

Sets the number of lines printed by a LIST command before pausing to n.

NEXT NEXT [{V>,<W)...]

Last statement of a T'UR loop. V is the vartiable of the wost recent loop, W of the next most
recent and so on. MNEAT without & variable terminates the most recent FOR loop,

ON...GOTO OXJ{I>GOTOC1list of line numbers}

Branckes to line whose number is Ith in the list, List elements are separated by commas. If
I=0 or > number of elements in the list, execution continues at next statement, If IO or »>255,
an error results.

N, ,.GOSUB ON {I) GOSUB {list>

Same as ON...GOTC except 1ist elements are initial line numbers of subroutines,
OUT ouT{IY, {I>

Sends byte J to port I, O¢=I,J¢=255,

POKE T'OKELT) ,C 37

Stores byte J in memory location derived from I, 0<=J<=2553;-32768{I<65536. If I is negative,
address is 65536+I, if I is positive, address=I.

PRINT PRINT{X>[,<Y¥>...1

Causes values of expressions im the 1ist to be printed on the terminal., Spacing is determined
by punctuation,

Punctuation Spacing - next printing begins:
y at beginning of mext 14 column zone
H immediately

other or none at heginning of next line.
String literals may be printed if enclosed by (") marks,

READ READEYD [,(W>,,.]
Asgigns values in DATA statements to variables., Values are assigned in sequence with the first
value in thke first DATA statement,

REM REM [<remark>]
Allows insertion of remarks., Not executed, but may be branched into, In extended versions,
remarks may be added to the end of a line preceded by a single quotation mark (').

RESTORE RESTGRE
Allows data from DATA statements to be reread. Next READ statement after RESTORE hegins with
first data of first data statement, '

RETURN RETUEN

Texrminates a subroutine, Branches to the statement after the most recent GOSUEB.
SCREEN SCREEN <X7,{Y>

Sets the cursor positiom to character position X, 1line Y.

STOP STOF

Stops program execution, BASIC epnters coumand level apd prints BREAK IN LINE nonnn,
WAIT WALTLID DT, <K>)

Status of port I 1is XOR'd with K and AND'ed with J.
Continues execution awaits non-zere result, K defaults to 0, 0<{=I,J,K{=255,

WIDLTH WIDTH £n’
Sets the width of input and print buffers to v (see 5 (b)),

Pﬁfojg page 5.14
Isgsue 2

o - [g R S Thuizr mrhd v

0o=3 IOUVTLOS LY FrUudu Ll ous

Nascom BASIC provides several commonly used algebraic and string functions which may he called
from any program without further definition. The functions in the following table are listed
in alpkabetical ordor, The protation to the r¥ight of tha Call Format is the versions in which
the function is available. As usual, X and Y stapnd for expressions, 1 and J for integer
expressions and X and Y$ for string expressions. :

Function Call Format

ABS ABS (X)

Heturns absoluie value of expression X. ABS{X)=X if X»=0,-X if 0.

ASC ASC{x$)

Returns the ASCIT code of tho first character of the string X$, ASCII codes are in appendix A,
ATN ATN(X)

Returns arctangent (X}. Result is in radians in range -pi/2 to pi/2,

CHR$ CHR$ (1) _
Returns & string whose one element has ASCIT code I, "ASCII codes are in Appendix a,
cos CoSs(X) :
Returns cos{X), X is ip radians.

EXP EXP{X)

Returns & to the power x. X must be <=B7.3355.

FRE FRE(D)

Returns number of hytes in memory not heing used by BASIC, If argument is a string, returns
number of free bytes in string space,

INP INP{I)

Reads a byte from port I.

INT INT(X)

Returns the largest integer (=X

LEFT$ LEFT${X$,T)
RBeturns leftmost I characters of siring

LEN LEN(X$}
Returns length of string X¢. Non-printing eharacters and blanks are counted,
LOG LOG{X)

Returns natural log of X, X0

MID$ MID$ (X$,1{,J])

Without J, returns rightmost characters from X$ begipnning with the Ith character. If I)LEN(X$),
MID$ returns the null strieg. 0{I¢255%, With 3 arguments, returns a string of length J of char-
acters from Xf beginnieg with the Ith character. If J is greater than the number of characters

in X to the right of I, MID$ returns the rest of the string. 0{=J¢=255.

POS POS(I)
Returns present column position of terminal's print head, Lefimost position =0.
RND RND(X)

Returns a random number hatween 0 and 1, X<0 starts a new sequence of random numbers. X»0
gives the mext random uuwmber in the seguence. X=0 gives the iasti ovumber returned, Sequences
started with the same negative number will be the same.

RIGIITS RIGHT$(X$,1)

Returus ¥ s of ing Xb

SGN SGN (X))

If X0, returns 1, if X=0 returns 0, if X0, returns -1. For example,
ON SGN(X}+2 GOTO 100,200,300 branches to 100 if X is negative, 200 if X is 0 and 300 if X is

positive,

SIN SIN(X)

Returns the sine of the value of X in radians, COS{X)=SIN(X+3,14150/2)},

SPC SPC{1)

Prints I blapks on terminal, O0¢=I{=255

SGR SGR{X)

Returns sguare root of X, X must be >=0

STR$ STR$ (X}

Returns striog representation of walue of X,

TAB TAB(I)

Spaces to position I on the terminal. Space 0 is the leftmost space, 71 the rightmoest. If the
carriage is already beyond space I, TAB has no effent. 0(=I<=255. May only be used in PRINT

statements,

TAN TAN(X)
Returns tangent(X)}. X is 1ir radians.
USR USR(X)

Calls the unser's machine language subroutine with argument X,

ra AT fwd
¥ VALY

L } : .
Returns numeriecal value of string %;. If first character of X% is not +,-,& or a digit, VAL(X$)=o0,

6-5

Special Characters

Nascom BASIC recognizes several characters in the ASCII font as having specilal functions in
carriage control, editing and program interruption. Characters such as Control/C, Control/S

v
eto, are tvped hy holding down the Control kev and typing the designated letter, Tha grasial
etc,, arg Lyped by nNolding SOowWn Lhe Control €Y and T¥ping thne dgesignatel Lgtter ne speclal

characters are listed in the table below. Note that those marked with an asterlsk do not
apply when inputting using Nas-sys in normal mode.

@ @ {Escape or shift + Newline for Nas-sys)
Erases current line and executes carriage return
{backspace)}

Erases last character typed. If there is no last character types a carriage return.
(underline) :

same as backspace.

Newline (or Enter)
Returns print head or cursor to beginning of the next line.

Escape (shift + newline) :

Interrupts execution of current program cor list command., Takes effect after execution of the
current statement or after listing the current line. Program execution can be continued by
typing any character, except that typing a further Escape causes BASIC to go to command level
and types O,

CONT command resumes exeuction. See section 6-1,

Hote: The keys must be depressed on the Nascom keyboard. Pressing ESC on an attached serial
terminal has no effect.

Separates statements in a line,

Fubout {Control Z)

Deletes previous character on an input lime. First Rubout prints the last character to be
printed, Each successive Rubout prints the next character to the ieft and deletes it typing
a new character causing the new character to be printed.

Control /R
Prints newline and echos the line being input.

Control /U

o = @
[=l =T LR = =

Lower Case Input

Lower case alphabetic characters are always echoed as lower case, but LIST and PRINT will trans-
late lower case to upper case, if the lower case characters are not part of string literals, REM
statements or single quote (') remarks.

Error Messages

After an error occurs, BASIC returns to command level and types OK. Variable values and the
program test remain intact, butthe program cannot be continued by the CONT command. All GOSUB

and FOR context iz lost. The program may be continued by direct mode GOTO however. When an
error occurs in a direct statement, no line number is printed., Format of error messages:

Direct Statement ?XX ERROR

Indirect Statement ?X¥ ERROR TN YYYYY .
where XX 1s the error code and YYYYY is the line number where the error occurred. The following
are the possible error codes and their meanings:

ERROR CODE EXTENDED ERRCOR MESSAGE
BS SUBSCRIFT CUT QOF RANGCGE

An attempt was made to reference an array element which is cutside the dimensions of the array.
This error can occur if the wrong number of dimensions are used in an array reference. For example:
LET A (1,1,1)=2%

when A has already been dimensioned by DIM A (10,10}

DD REDIMENSIONED ARRAY

After an array was dimensicned, ancther dimension statement for the same array was encountered.
This error often occurs if an array has been given the defult dimension of 10 and later in the
pProgram a DIM statement is found for tha same array.

FC ILLEGAL FUNCTION CALL

The parameter passed to a math or string function was out of range, FC errors can occur due to:
1. a negative array subscript (LET & {-1)=0)
2. an unreascnably large array subscript (32767)
3. LOG with negative or zero argument

A ann with mecative aroument
2. oUn Wiltil DNedacive aryunenc

5. 2 B with A negative and B not an integer

6. a call to USR before the address of a machine language subroutine has been entered.

7. calls te MID$, LEFT$, RIGHT§, INP, QUT, WAIT, SCREEN, WIDTH, SET, RESET, POINT, DEEK,
DOKE, FEEK, PCKE, TAE, SPC, or ON,..GOTO with an improper argument.

MO MISSING OPERAND
No operand has been given to the command., CSAVE without a file name is illegal.

PF/019 : Page 5.1

6-6

o

Issue 2
TTL T AT AT ™Tnaram
ALLr Llaoiaaly 1 nidhel
INPUT and DEF are illegal in the direct mode,
NF NEXT WITHOUT FOR
Mhn wamdahla 30 2 MEYT gidodtamant nnwvwnonande 14 ma noarimaoly savonvtad FOR cotntamant
The variable in a NEXT statement corresponds ito uo previously executed FOR statement,
oD OUT OF DATA
A READ statement was executed but all of the DATA statements in the program have already heen
regad, The program tried to read too much data or insufficient data wasgs included in the program,
[yl ouT OF MEMORY

large, has too many variables, tco many FOR loops, too wmany GOSU3s or too com-
ginona. See Appendix C.

ov OVERFLOW
The result of a calculation was too large to be represented in BASIC's number format, If an
underflow occurs, zero is given as the result and execution continues without any error message
being printed.

SN SYNTAX ERROR . :
Missipg parenthesis in an exprassion, 1llegal character in a line, incorract punctuation, ete,
RG RETURN WITIOGUT GOSUB
A BRETUBN stalomont was encounterad before a provious GOSUB statemeni was executed.
UL UNDEFINED LINE
The line reference in a GOTO, GOSUB, or IF... THEN was t0o a line which does not exist.
/0 DIVISTON BY ZERO

Can oceur with integer division and MOD as well as floating point division. 0 to a negative

power also causes a DIVISION BY ZERO error,

CN CAN'T CONTINUE
Attempt to contlibue a program when none exists, an error cccurred, or after a modification was
made to the program,

LS STRING TO LONG
Apn attempt was made to create a string more that 255 characters long.
oS OUT OF STRING SPACE

String variables exceed amount of string space allocated for them. Use the CLEAR command to
a&llocate more string space or use smaller strings or fewer string variables,

5T STRING FORMULA TOO COMPLEX :
A string expression was too long or too complex. Break it into two or more shorter ones.
™ TYPE MESMATCH)

The left hand side of an assignment siatement was a numeric variable and the right hand side
was a string, or vice-versa; or a function which expected a string argument was given a numeric

one or vice-versa,
UF UNDEFINED USER FUNCTION
Reference was made to a user defined function which bhad never heen defined,

Reserved Words
Some words are reserved by the Nascom BASIC interpreter for use as statements, commands, opera-—

tors, etc, and thus may not be used for variable or function mnames. The reserved words are
listed below, 1In addition to these words, intrinsic function names are reserved words,

RESERVED WORDS .
CLEAR NEW AND OUT

DATA NEXT CONT POINT
DIM PRINT DEF RESEY
END READ DOKE POKE
FCGR REM N SCREEN
GOSUR RETURN LINES SET
GOTO RUN NOT SPC

Ir STOP NULL WAIT
INPUT TO ON WIDTH
LET TAB 0R

LIST THEN

USR

PF/019 Page 5.17

Issue 2

RUNNING BASIC
0M ar 8 x 1K byte EPROM's and should be situated frow

Bogic is distributes n 1 x 8K bytﬁ

nDasld 15 Wi u 4Loon L X oA

E000H to FFFFH,

The following entry points are available for running basie,

EOGOI — cold start entered by typing EEGOO - when used with Nas-sys also reseis the

monitor

b) FFFAH — normal cold start, BEntered by typing J under Nas-sys or EFFFA under Nasbug
- does not reset the wonitor

a
=

e} FFFDH - warm start. Entered by typing Z under Nas-gys c¢r EFFFD under XNasbhug -
retains any programs etc. in store and can only he used after the system has been

initialised by entering at E00O or FFFA
when initialised, the system responds with the message
Megmory Size?
You should then type either .
a) a newline or enter charecter, after which the Basic will use all available store
above 1000H, or
b} & decimal address representing the highest store location you wish Basic to use, In
this way you can reserve space at the top of store for user machine code routines.

when successfully started, Basic prints tho message

NASCOM ROM BASTIC Ver 4,7
Copyright (c¢) 1978 by Microseft
Zny Bytes free

whaere ¢n> is the number of bytes available for program and data, and enters Basic command mode,
Programs or direct commands can then be eutered.

PF/019 Page 5.18

Issue 2

APPENDIX A

ASCIT CHARACTER CODES

DECIMAL CHAR, DECIMAL CHAR. DECIMAL CHAR.
000 UL 043 + 086 v
001 S50H Ohl . 087 W
002 STX 045 - 088 X
003 ETX 040 . _ 089 Y
004 EOT ou7 / 090 7
005 ENQ 048 o 091 r
006 ACK 049 1 092 \
007 BEL 050 2 093 3
008 BS 051 3 094 s
009 HT 052 4 095 <
010 LF 053 5 096 !
ol1 VT 054 6 097 a
ol2 FF 055 7 098 b
013 CR 056 8 099 c
014 S0 057 9 100 d
015 51 058 : 101 e
016 DLE 059 H 102 f
017 DC1 060 < 103 £
018 DC2 061 = 104 h
019 nes 062 > 105 i
020 DCA 063 2 106 i
021 NAK 064 e 107 k
022 SYN 065 A 108 1
023 ETB 066 B 109 m
024 CAN 067 (& 110 n
025 EM 068 D 191 o
026 "SUR 069 E 112 P
027 ESCAPE 070 F 113 q
028 FS 071 G 114 r
029 G5 072 H 115 s
030 RS 073 I 116 t
031 Us 074 J 117 u
032 SPACE 075 K 118 v
035 ! 076 L 19 w
034 " 077 M 120 x
035 = 078 N 121 ¥
036 $ 079 h 122 z
037 % 080 P 123 {
038 & 081 Q 124 \
039 ! 082 R 125 1
040 { 083 8 126 ~
041) 084 T 127 -DEL
042 * 085 u

LF=Line Feed FF=Form Feed CR=Carriage Return DEL=Rubout

Using ASCII codes -— the CHR¥} Tunction.

CHR$(X) returns a siring whose one character is that with ASCII coede X. ASC(X$) converts the
first chavacter of a string to 1is ASCII decimal wvalue,

Opne of the most common uses of CHRE is to send a special character to the user's termipal.
The most often used of these characters is the BEL (ASCII 7). Printing this character will
cause a bell to ring on some iterminals and a bheep on many CRT*=s. This may be used &5 a pre-
face to an error message, as a novelty, or just to wake up the user if he has fallen asleep.
Example:

PRINT CHR${7);

Another major use of special characters is on those CRT's that have cursor positioning and
other special functions (such as turnipng on a bard copy printer), For example, on scome CRT's
a form feed (CHR$(12)) will cause the screen to erase and the cursor tc "home" or move to the
upper left corner,

Some CRT's give the user the capability of drawing graphs and curves in a special point-plotter
mode. This feature way eagily he taken advantage of through use of Nascom BASIG!'s CHR$

function.

FF/019 Page 5.19
Issue 2

SPACE AND SPEED HINTS

A, Space Allocation

The memory space required for a program depends, of course, on the number and kind of glaements
in the program., The fcllowing table contains information on the space required for the various
program elements.

Element Space Raquired
Variables

nylEioric
Arrays
strings and floating pt. (no of elements)* 6 + 5 + (no of dimensions)*2 bytes

Functions
intrinsic 1 byte for the call
user-defined % bytes for the definition

Reserved Weords | bvto each

(Other Characters
1 byte each

Stack Space
active FOR loop 16 bytes
active GOSUR 5 hytes
parentheses 6 bytes each set
tenporary

result 10 bytes

Basic itself occupies B8K of RCM

B, Space Hints
T

he space raguired to run a program may he significantly reduced without affecting execution
by following a few of tha f0110w1ng hints:
1. Use wultiple statements per line, BEach 1line bas a 5 hyte overhead for the line
numbher, ate,, so the fewer lines there are, the less storage is reguired.
2, {elete unnecessary spaces, Inatead of writing

10 PRINT X,Y,Z
use
10 PHINTX,Y,Z

3, Delete REM statements to save 1 byte Tor REM and | byte for each character of the
remark,

4, Use variables instead of constants, especially when the same value is used several
times, For example, using the constant 3.14159 ten times in a program uses 40 bytes more space
than assigning

10 P=3,14159
gnee and using P ten times,

5. Using END as the last statement of a program is not necessary and takes one byte extra.

6. Reuse unneeded variables instead of defining new variables,

7. Use subroutines instead of writing the same code several times.

g, Use the zero HlﬂmHHDﬁ of aryays, Remember the array dimensioned by

100 DIM A(]0)
has eleven elements, A(0) through A(10},

C. Speed Hints

1. Deleting spaces and REM statewents gives a small but significant decrease in execu-
tion time,

2, Variables are set up in a table ipm the order of their first appearance in the program.
Later in the program, BASIC searches the table for the variable at each reference, Variables
at the head of the table take less time to search for than those at the end. Therefore, reuse
variable names and keep the 1list of wvariakles as short as pessible.

3. Use NEXT without the index variable,

4, Use variables instead of constants, especlally in FOR loops and other code that wmust
be axecuted rapeatedly.

. S5ty ing variables set up 4 descriptor which © a1ns g

p01nter to the first memory location of the string. A trings are mani pulated tring space
fills up with intermediate results and extrapecus material as well as the desired siring infor-
matiorn, When this happens, BASIC's "garbage collection" routlne e¢lears out the unwanted mat-
erial. The frequency of garbage collection is inversely proporticnal to the amount of string
space, The more siring space there is, the longer it takes to fill with garbage, The time
garbage collection takes is proportional to the square of the number of string variables. There-
fore, to minimize garbage collection time, wake string space as large as possible and use as

few string varlables as possible.

1
c+
o
F'h
+
3'

ant
RUIERE
8 5

PF/019

1. Derived Functions

Page 5.20
Issue 2

APPENDIX C

MATHEMATICAL FUNCTIONS

The following functions, while net intrinsic o Nascom BAbIC can be calculated using the

existipg BA3SIC functions:
Funection

SECANT
COSECANT
COTANGENT
INVERSE SINE
INVERSE COSINE

TNVERSE SECAKT

INVERSE COSECANT

TAWIETIOO T mAWISATIm
AN VEOLDL \JUJ.HJ\IU’EJLY L

HYTERBOLIC SINE
HYPERBOLIC COSINE
HYPERBOLIC TANGENT

HYPERBOLIC SECANT
HYPERBOLIC COSECANT
EYPERROLIC COTANGENT

INVERSE HYPERBOLIC SINE
INVERSE HYPERBOLIC COSINE
INVERSE RYPERBOLIC TANGENT
INVERSE HYPERBOLIC SECANT
INVERSE HYPERBOLIC COSECANT
INVERSE HEYPERBOLIC COTANGENT

BASTIC equivalent

SEC x; = 1/008 }

esc{X) = 1/SIN(X

coT = 1/TAN(X)

AHLblN'K) = ATN(X/SQR{~X*X+1})
ARCCO%kX] = -ATK {X/SQR{-X*X+1)}

.5708
ARCSEC(X) = ATN(¥SQR{X*X-1))
+SCN(SGN(X)-1)*1.5708
ARFCSC X} = ATN(1/SQR(X*X—1))
SGN(X)-1)*1.5708

ARUCGT\V} = ATN(X):1,5708

SINH({X) = EEXPE -EXP{-X))/2

COSHEX = (EXP{X)+EXP{-X)}/2

TANH(X) = EXP(~X)/EXP(X}+EXP{-X))
*24+1

SECH%X = 2/[EXP2X}+EXPE=X;}

CSCH(X) = 2/{EXP{X)-EXP

coTH({X) = EXP(-X)/{EXP(X)-EXP{-X))
*2+1

ARCSINH(X) = LOG X+SQR£X*X+1)}

ARCCOSH(X) = LOG{X+SQR(X*X+-1))

ARCTANE(X) = LoG{{1+X)/{i-X))/2

ARCSECHtX = L0G sqns X*X+1§ 1 ;

ARCCSCHEX = LOG{ (SGN(X)*SQR{X¥X+1)+1)}/X

ARCCOTH(X) = LOG{(x+1)/(X-1))/2

PF/019 : Page 5,21
Issus 2

APPENDIX 1

BASIC AND ASSEMBLY LANGUAGE

Tha USR

Nascom BASIC has provisions for intertfacing with assemwbly language routines ha
i the same

e
function allows Nascowm BASIC programs to call assembly language subroutines in
manner a5 BASIC functions,

The first step in setting up a machine language subroutine for a BASIC program is to set
aside memory space, When BASIC asks, "MEMORY S1ZE?" during initialization, the responsa
should be the top of memory available minus the amount needed for the assembly language
routine. BASIC uses all the bytes it can find from location 4096 up, so tho topmost loca-
tions in memory can he usad for usaer supplised routines, Locations from QCOOH to 1000H neot
nsed by the Nascom monitor can also be uscd for user written routines. If the answer to the
MEMORY SIZE? question 18 toc small, BASIC will ask the guestion again until it gets all the

memory it needs, See Appendix C for Nascom BASIC's memory requirementis.

sembly language routine mav bhe loaded into memory ino the usual way, or from a BASIC
m by means of a PDKE or DOKE statement.
The starting address of the assembly language routine goes in USRLOC, a two byte location in
pemory situated at 1004H and 1005H (least significant byte im 1004H most significant in 1005H) ,
The function USH calls the routine whose address is in USRLOC, Initially, USRLOC contains the
address eof ILLFUN, the routine which gives the FC or ILLEGAL FUNCTION CALL errcr, If USR is
called without an address loadsd in USRLOC, an ILLEGAL FUNCTION CALL error results,

When USH is called, the stack pointer is set up for 8 levels {16 bytes) of stack storage, If
more stack space is peeded, BASIC's stack can be saved and a new stack set up for use¢ by the
assembly language routine, BASIC'sg stack must be restored, however, hefore returning from tihe

user routiue,

A1l memory and 21! the registers can be changed by a iiser's assembly language routine. Of
course, memory locations within BASIC ought not tc be changed, nor should more bytes he
popped off the stack than were put on it.

USR is called with a single argument, The assembly language routine can retrieve this argu-
ment by calling the routine whose address is in locations E0OBH and EQOCH. The low-order
byte of the address is in EOOBI and the high-order in E0OCH, This routine (DPEINT) stores the
argument in the register pair (D,E).

The argument is trusc e 32768 to 32757, an FC
errocr accurs,

To pass a rasuli back from an assembly lanpguage routine, load the value in register pair TA,B].
This value mnst be a signed, 16 hit integer as defined above., Then call the routine whioss
adiress is in lecations EOODH and EQOEH, If this routine is not called, USR(X) returns X. To
return to BASIC, then, the assembly language routine executes a RET instruction,

Apy interrupt bandling routines should save the stack, reglsters A-L and the FSW, They should
also reenable interrupts before returning since an interrupt automatically disables all further
interrupts once it is received,

There is cnly one way to call an assewbly language routine but this doas not limit the pro-
grammet to only one assembly language routine. The argument of USR can be used to designate
which routine is being called., Additional arguments can he passed through the use of POKE or]
DOKE and values may be passed back by PEEK or DEEK. :

PF/019 Page 5.22

Issue

APPENDIX E

USING THE CASSETTE TNTERFACE

Programs may bo saved on cassette tape by weans of the CSAVE command, CSAVE may be used in
gither direct or +indirect mode, and its format is as follows;

C5AVE <string exprassion’>

The program currvently in memory is saved on cassette under the name specified by the first
character of the <string expression>, MNote ithat the program named A is saved by CSAVE "A",
After CSAVE is completed, BASIC always returny to command level, Programs are writien on
tape in BASIC's internal represestation., Variable values ara not saved on tape, although an
indirect moede CSAVE does not affect the variable values of the program currently in memory.
The number of nulls {see NULL command) has no effeet on the operation of CSAVE, Before using

OSAVE, turn okt the cassette recorder. Make suro the tape is in the proper position then put
the recorder in RECORD moda. -

CSAVE first writes a block header aini
then ealls the appropriate mounitor routine

Progams may be loaded from cassette tape hy means of the CLOAD command, which has the same
format as CSAVE. The effect of CLOAD is to execute a NEW command, clearing memory and all
variable values and loading the specified file into memory. When fipished Nascom

BASIC returns to command level, Reading starts by searching until 3 consecutive zeros are read.
BASIC will not return to command level after a CLOAD if it could not find the requested file,

or if the file was found but was mis-read, In that case, the computer will contipus to ssarch
until it is stopped and restarted. When a program is found the message

ayed, The method of displaying the program as it is input depends on the monitor in use,

is displ

Data mray be read and written with the CSAVE¥ and CLOAD¥ commands. The fermats are as follows:
CSAVE#<Array variablie nameb

and
CLOAD*<array varlable name)

Saga section 2-4%4 for a discussion of CSAVE¥ and CLOAD¥ for arvay data,

A sumcheck is generated on imput and cutput, If the sumcheck fails on input, the message "had"
is displayed and Basic returns to command level. Note that the ipncorrect data will have been
put in store.

In case of a misread, a direet GOTO or CLOAD command can be used to cause the data to he re-read.

Under Nas-sys, CLOAD?<string expressiond> reads the program from tape without putting it in store
and can he used to check that a program has heen correctly saved.

Noie ithat you can also fool Basic into LISTing or PRINTing ic tape ox INPUTting programs or data
from tape by using the X0 command under Nasbug Th and Nas-sys, This is a useful way of storing

libraries of subroutines which can be input and used as part of different programs.

Further examples of storage and retrieval of tape data are contained in appendix I.

PF/019 Page 5.23
Issue 2

AFPPENDIX F

CONVERTING BASIC PFROGRAMS

NOT WRITTEN FOR NASCOM COMPUTERS

Though implementations of BASIC on different computers are in many ways similar, there are
sgma incompatibilities between Nascom BASIC and the BASIC used on other computers.

1. Strings

A number of BASICs require the length of strings o be declared before they are used. All
dimension statements of this type should be removed from the program. In some of these BASICs,
a declaration of the form A$3{I,J) deeclares a string array of J elements each of which has a
length I. Convert DIM statements of thls type to equivalent ones ‘in Nascom BASIG: DIM A${J},
Nascom BASIC uses *+* for string coucatenation, noet "', " or " & ." XNascom BASIC uses LEPDS,
RIGHT$ and MIN$ to take substrings of strings. Some other BASIUs use A${I) to access the 1th
character of the string A$, and Af(TI,J) to take a substring of A% from character position I

to character position J. Convert as follows:

OLD NEW
A$(1) MID$§AS,I,1)
AS(T,J) MID$(AS,I,J-T+1)

This assumes that the reference to a subseript of AF is in an expression or is on the right side
of an assignment., If the reference to A% is on the left hand side of an assignment, and ¥ is
the gtring expression used te replace characters in A$, convert as follows:

LD NEW

AR (T)=x3$ A$:LEFT$§A$,I—12+X$+MID$$A$,I+1)
A$(1,J)=X8$ A$=LEFT$ (A%, I-1}+X3+MID$ (AS,T+1)
2, Multiple assignments.
Some BASICs allow statements of the forw:
500 LET B=C=0
This statement would set the variables B and C to zere., 1In Nascom BASIC, this has an antively
different effect, All the "=" signs to the right of the first one would he interpreted as

logical comparison operators. This would set the variable B to -1 if C equaled ¢, If C did
not equal ¢, B would be set to 0, The easiest way to converi siatements like this one is to
rewrite them as follows:

500 C=0:B=C

LT R 3 P

- = S e MM s e owlwm sl a o
3. Zoma Baslive use YN 1lasigad o1 : TO UBLIELLT HULtlipi
™M to ":" in the program,

o
]
=k
+ 3
Ll
&
E
=]
[
o
[w]
=]
[+
P
=
=]
=]
N
<3

L, Programs which use the MAT functions available in some BASICs will have to be rewritten
using FOR...NEXT loops to perform the appropriate operations,

Page 5.24

PF/019
Issue 2

APPENDIX G
STORAGE, USED

Nascom Basic leaves locations between OC80H {3200 decimal) and 1000H {4096 decimal) for use by
user machine code routines, It uses locations 1000H to 3E11H {4414) for workspace and resides
in EOOOH to FFFFH, Locations 3E12H to EOCOH are therefore available for the users Basic
program and data.

PF/019 Page 5,25

lasug 2

APPENDIX H

USEFUL BOOKS

You way find the following books useful. They are no
merely a list of books which we at Nascom have seen a

= ook
(=1
=4 -4

1. General Introduction to Pragramming in Basic
Basic Programming by John G. Kemery and Thomas E Kurtz, Pub, Wiley
Instant Basic by Jerald B Brown, Pub, Dilithlum Press
Basic Basic by James 5 Coan, Pub, Jayden ’
Advanced Basic by James S Coan, Pub, Hayden

2, Games and Useful Programs

What To Do After You Hit Return (or PCC's First Book of Computer Games). Pub. People's
Computer Company

Basie Software Library (six volumes) R W Brown, Pub, Scientifle Research Institute

PF/019 Page 5.26
Issue

APPENDIX 1}

USEFUL. ROUTINES

1. Writing to 1ine 16 {(non-scrolled) under Nas-sys

1 REM THIS ROUTINE WRITES TO LINE 16
2 REM USING NAS-SYS

10 CLS

20 SCREEN 1,15

25 REM THAT PUTS IT ON BOTTOM LINE

7n DPRTNT NTIRADRLR .
30 roang LAWY

%5 REM NOW WE ARE GOING TO COPY IT TG TOP
40 FOR C=2954% to 3000 STEP 2

50 DOKE C+64,DEEK(C)

60 NEXT C

65 REM CHA$(27) GENERATES ESC=LINE DELETE
70 PRINT CHR$(27):

80 BEM REST OF PROGRAM CAN START HERE

o o T A et aed o ezzimlhio e t o Them oo
Zy CTOETAL 10 COUVert nax pumbers to Decimal

CLS

PRINT

40 INPUT"ENTER HEX No.";H§
20 T=0:D=1

%0 FOR P=LEN(H$)_
%0 C=ASC(MIDS (HS,I
50 D=D+1

60 IF gc>=48)*(0<= 7
70 IF | Cp=b5)%{C<=70
80 PRINT "gve lax wi
100 T=T+C*{6TP

110 NEXT

120 PRINT "ilex ";H$3;" in Decimal is";T
130 GOTO 5

L

U._\.

A better way of writing lines 60 & 70 is :
8:GOTO 100 60 IF Cy= 48 AND C<= 57 THEN... etc.

-4
5._._ i TN 7 r-‘)— 65 AND = 70 THEN ato
13

I\.J‘I

5: GOTO foo 70 AND O THEN... etc.
lease":GOTO 5

3. To set X Moda under Nas-sys

10 DOXE 3189 , 1925
20 DOKE 3187 , 1917
50 POKE 3112 ¢ {optiond
where option 1s 0, 1, 16, 17, 32, 33, 48 or 49, as appropriate
e.g, to set X0, option = O
This routilne can be uged to turnm & serial printer on under program control

b. To set N Mode under Nas-sys

10 DOXE 3189 , 1922
20 DOXE 3187 , 1919
This routine can be used to turn off a serial printer

5. Te set U Mode under Nas-sys

10 DOKE 3189 , 1921
20 DOKE 3187 , 1918
This can he used to set U mode to support user-writtem I/0 drivers,

10 POKE 3711, (opt:Lon)
whera option = 0, 1, 4, 0 5 to set normal, typewriter, graphlcs orxr typewriter apd graphics
mode,

T To scan the kevboard for input under Nas-svs

The following code sets up a USR call whick scans the EKeyboard and returns the ASCII velue
of any character typed on the keyboard, or zere¢ if no character has heen typed.

PF/019

10
20
30
40
50
60

70

DOKE
DOKE
DOKE
DOKE
DOKE

FOKE
DOKE

The USH call

Tha hads

~ar O

7
oY

DF
38

@
o

(=
B

AF

3200
3202
3204
3206
3208
3210
4100

*
EH
¥
*
t
H
*

can be

the USSR subroutine is

on EO

25311
312
18351
10927
-8179
233
3200

used as follows,
80 IF ySR(0)}<>0THEN GOTC 500

RST SCAL
DEFB ZIN

JR C, CHAR
XOR A

CHAR LD B, A
XOR A

LD HL{#EOOD)

T STy
LV VELL)

for example,

ag fallawg:
1¢ Von SunTeuting L8 AR IoiiowWs!

scan inpuits
skip if char
clear A

put char in B

clear A

got address in HL

[R

Page 5.27
Issue 2

PF/019 Page 5.28
Issue 2

APPENDIX J

SINGLE CHARACTER INPUT OF RESERVED WORDS

Iniernally, Basic stores reserved words in programs in the form of & single character reserved
word token, which has bit 8 set and bits | to 7 representing an index to a roserved word table,

The reserved word tokens can be generated direcitly, reducing the amount of typing required and
enabling "longer" statements to be typed in on a single line,

To generate these tokens, it is necessary to kold down the "eraphics” key on the keyboard plus

one or more other keys, Noie that some characters may require "shift" %o be bheld &own {e.2.t

¥ gte.) and others may alsg require "control" to be held down too, When typing & program in this
way, a graphics character will be gencrated, but the program will LIST correctly with the reserved
words generated in full, .

The keys reguired for each reserved word are as follows:

Reserved Worids Keys Raesorved Words Keys
Graphies plus Graphics plus
END Control Shift @ NEW §
FOR Control A TAB(%
NEXT Control B TO &
DATA Control C N 1
INPUT Control D SPC({
DIM Control E THEN)
READ ’ Control F NOT *
LET Control G STEP +
GOT(G Control H AND 1
RUN Control I OR 2
IF Control J SGN 3]
RESTORE Contrel K INT 7
GOSTUB Control L ABS g
RETURN Control M USR 9
REM Control N FRE :
570P Control O INP :
ouUT Control P POS <
oN : Control SQR =
NULL Control R RND =
WAIT Control S LOG %
DEF Control T EXP ghift @
POKE Control U COos A
DOKE Control ¥ 51N B
SCREEN Control W TAN Cc
LINES Control X ATN D
CLS Control Y PEEX E
WIiDTH Control 2 DEEK F
MONITOR Control € POINT G
SET Control \ LEN H
RESET Control I STR$ I
PRINT Control # VAL J
CONT Control _ (underline}) ASC K
LIST space CHR$ L
CLEAR ! LEFT$ M
CLOAD " RIGHT$ N
CSAVE £ MID$ 0

