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The Nicolet 1080 minicomputer/dataprocessor facilitates the acquisition (measure-
ment and ensemble-averaging) of a signal from an experiment as well as for its
subsequent analysis. Applied to a diversity of research purposes in Lancaster be-
tween 1976 and 1996, it led to more than 150 scientific publications involving 66
researchers in 10 countries – ranging from measurements of the Landau critical
velocity for roton creation in superfluid 4He to the first observations of optimal fluc-
tuational paths in nonlinear systems subject to noise. These personal reflections
provide summaries of the NIC-80’s unusual hardware and of how NIC-80 systems
evolved in Lancaster, my introduction to the NIC-80, and descriptions of its use in
practice. References are provided giving examples of Lancaster scientific publica-
tions reporting on research facilitated by the NIC-80. Descriptions of stochastics
programmes and utilities that we wrote for the NIC-80 are provided in appendices.

1. Summary of the Nicolet 1080 Series Hardware

NIC-80 variants . The Nicolet 1080 series consisted of several very similar machines of which
about 270 were manufactured in the 1970s. In what follows, I will focus on the LAB-80, MED-80,
and BNC-80 which I will refer to collectively as the NIC-80 family. Their immediate predecessor
was the 1080 itself and, in computing terms, they were all practically identical to it. The differ-
ence was that the 1080 was absolutely covered in hardware switches and adjusters, whereas
in the NIC-80s nearly all the functions in question were performed by software. Hence the
NIC-80s looked tidier and friendlier – and were less expensive to manufacture.

The LAB-80 and BNC-80 were identical (Nicolet sold the latter via the Bruker Data Corporation,
and allowed them to put their name and logo on the front panel). The MED-80 had a different
internal digitiser with more channels, better-suited to work in physiology and medicine, but
otherwise was the same as the LAB-80 and BNC-80. There was also an NMR-80, which I
understand was the same as the latter two machines.

Dual operation . Each of these machines was capable both of making measurements from
an experiment, using an internal 100 kHz digitiser or an external transient recorder, and of
analysing the results.1 Thus in one mode it behaved as a hard-wired signal-averager, ensemble-
averaging sequential repetitions of a signal into a block of memory selected with the buttons on
the front panel: this averaging enabled the extraction of a weak signal buried in electrical noise
because the noise, being random, tended to average away to nothing, thereby exposing the
signal. Once the acquisition process was complete, the NIC-80 switched to its minicomputer
mode, facilitating immediate analysis of the acquired/enhanced signal. Operations in the two
modes shared the same 20-bit memory and used the same 20-bit arithmetic logic unit (ALU.)
This configuration was a vast improvement over earlier arrangements where there had to be a
time-wasting transfer of the averaged signal to a separate minicomputer for analysis.

Memory . The NIC-80 used ferrite core memory. The unique 20-bit word length was a char-
acteristic Nicolet feature said to result from a compromise2 between precision and depth for
averaging, on the one hand, and cost on the other: ferrite core was exceedingly expensive.
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The NIC-80s normally operated with either 8K or 12K of memory, corresponding to either two
or three 4K “stacks” of ferrite core. The 20-bit memory conferred huge advantages in com-
parison with the 8-bit and 16-bit competitors of that era. It also provided for very simple and
efficient operation in which most computer instructions, including the destination address, could
be contained within a single 20-bit word.

Number conventions . The NIC-80 used octal, with bit-19 (the leftmost bit) treated as the sign
bit. Thus the largest positive integer was 1777777 (524,287 in decimal); the largest negative
integer was 2000000 (–524,288); and 3777777 (octal) represented −1 (decimal).

Decimal numbers . As Jack Kisslinger comments,2 “The 1080 was completely unaware of dec-
imal arithmetic.” So this had to be accomplished in software using the Floating Point Package.3

Programming . Versions of BASIC were available,4,5 but the real power and computational
capabilities of the NIC-80 required assembly language – which, fortunately, was relatively easy.

Hardware multiply/divide . A particular strength of the NIC-80 lay in its hardware multiply and
divide facilities. These utilised an additional 20-bit register, the MQ, along with the Accumulator.
They enabled two 20-bit octal numbers to be multiplied with 40-bit precision, or a 40-bit octal
number to be divided by a 20-bit octal number, in a single instruction. In the latter case the result
was the quotient and the remainder, each to 20-bit precision. The hardware multiply/divide
hugely speeded up arithmetic processing and made the NIC-80 an effective machine for all
scientific applications, including those requiring the computation of Fourier transforms, e.g.
nuclear magnetic resonance (NMR) spectroscopy.

Buttons . The upper horizontal row of buttons on the front panel selects the pages of “data
memory” to be used for the signal during data recording. The NIC-80 regarded octal ad-
dresses 0-7777 as programme memory and 100000-117777 as data memory; the address
range 10000-100000 did not exist. So selecting START = 0, SIZE = 1K would set 100000-
101777 as the block for signal acquisition/averaging. In reality, all the memory was identical
and many of our programmes ran partly in the address range of so-called data memory. The
buttons also allow for using extended memory, beyond the 12K that could be fitted internally.

Knobs . Two knobs on the front panel serve as a general-purpose facility for making manual
adjustment, usually related to the CRT display, e.g. control of expansion and offset, or posi-
tioning of cursors. They are in fact just multi-turn potentiometers whose voltage output can
be digitised and read into software, so they can be used for almost any purpose where fine
adjustments are to be made by hand while monitoring the results, e.g. for level-setting routines
in the Stochastics Library (see below).

Internal ADC . The sampling rate of up to 100 kHz was set via software, and the resolution up
to 12 bits was adjustable with the front panel buttons or under software control. In practice we
left the buttons set permanently to “Program Control”.

Vertical display scale shift . The switch is used to bring the displayed data within the vertical
range seen on the CRT. (The VDSH instruction left-shifts the Accumulator one bit for each click
that the knob is set back from the 131K position.)

LEDs and switch register . The 3 rows of LEDs on the front panel show the contents of the
Accumulator, Instruction Register and Program Counter, respectively. Using the switch register
(one switch per bit) and buttons enabled the contents of any address to be read, or to be set
to a chosen value. (To inspect the contents of the MQ required that they be transferred to the
Accumulator.) It was possible to start the machine running at a chosen address, or to step
through the instructions one-by-one noting the change in the Accumulator at each step, which
could be very useful in tracking down “bugs” in programmes. When the machine ran, all the
LEDs twinkled – an amazing sight!
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Figure 1: The minimal NIC-80 configuration6 as purchased by Lancaster. It consists of the NIC-80 itself with 8K
of internal memory, plus a high-resolution Tektronix CRT display for data (on top), a set of paper tapes with Nicolet
programmes (front), and an ASR 33 Teletype (right). Later, we added a third 4K stack of ferrite core memory and
NIC-298 (floppy) and NIC-294 (Diablo) disk drives. We also replaced the Teletype with a VDU together with an
optical tape reader and fast punch.

Input/output . The standard minimal configuration, as we initially purchased in Lancaster was
a shown in figure 1. The Teletype provided the sole input/output facility for the NIC-80. It was
used for reading in paper tapes with Nicolet programmes, punching paper tapes with data or
new programmes, and for printing out results or listings of programmes, as well as for keyboard
entry of commands and programmes. Being purely mechanical it was noisy and very slow.

However, the NIC-80 also had an RS232 connector that we later used for a visual display unit
(VDU) with dot-matrix printer. In addition, there was provision for connecting both hard and
floppy disk drives, as well as fast (optical) paper tape readers and a fast tape punch. Using
these devices in place of the Teletype transformed the NIC-80’s capabilities, provided the “feel”
of a much more modern computer, and enabled overlay-programming with hugely enhanced
computational capabilities (see below). There was also a second channel of RS232. In the
NIC-80 as delivered, the RS232 B-channel was inactive. When we eventually discovered it and
connected it up, it allowed us to transfer data to our Unix mainframe and to write software (e.g.
a Kermit) that facilitated the transfer of programmes and data between NIC-80s, as well as for
general communication between our NIC-80s and the outside world.

2. Using the NIC-80 for Research in Low Temperature Physics

Why did we buy a NIC-80? It was to support our research on liquid 4He – an exotic liquid that
exhibits the strange property of superfluidity when cooled below 2 K, i.e. close to the absolute
zero of temperature. That is, it loses all its viscosity so that a moving object experiences no
drag at all and behaves almost as though it is moving in a vacuum. However, there was a
long-standing prediction by the famous Soviet physicist Lev Landau that the superfluidity would
be lost once the object exceeded a critical velocity. We wanted to test this theory. We used
negative ions as the moving objects, and their arrival after traversing the experimental cell could
be registered as a tiny pulse of current – a very weak signal buried in random electrical noise
mostly generated by the electronics.

Our initial experiments enhanced the signal/noise ratio by use of a Hewlett-Packard signal-
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averager. It did the job very well, but there was no easy way of getting at the averaged signal
other than to plot it out on paper and measure it with a ruler to find out how fast the ions had
been going. So we planned to use instead a NIC-80 where we could both average the signal
and then analyse it in a precise and quantitative way after averaging had been completed.

Arrival of our first NIC-80 . We took delivery of our minimal configuration NIC-80 (as in figure
1) in 1977. Rather than the internal digitiser, which would have been too slow, we used an
external Biomation 8100 transient recorder to acquire the signals, which were then passed to
the NIC-80 for ensemble-averaging. Fortunately for me, I had a very talented PhD student at
that time, David Allum, who took charge of the NIC-80, worked out how to operate it, wrote the
required analysis software to complement Nicolet’s Lab80 signal averaging programme,6 and
then instructed me in how to use the system. I found it quite daunting when I first tried it on my
own, after David had finished his PhD and left to take up a job in computing.

Operating the NIC-80 . As the Nicolet programming manual1 puts it, “When a computer is first
manufactured, it ‘knows’ nothing. It does not even know how to read in program tapes.” The full
procedure for loading a programme was therefore as follows –

1. Toggle in 14 instructions from the switch register – the so-called Nico-Loadeon bootstrap
– which occupy a particular set of octal addresses (7736-7753).

2. Insert the Nico-Loadeon paper tape into Teletype tape reader, and start the processor at
address 7740. If all goes well, this deposits the Self-Checking Binary Loader in addresses
7632-7777. It was supposed to be retained there... but in practice the bootstrappping
procedure was needed quite frequently (so frequently, in fact, that David tells that he
could reproduce the 14 octal instructions from memory!).

3. Insert the programme tape into the Teletype, and start the processor at address 7777. It
takes typically 40 minutes or an hour to read in. At the end, or sometimes at intermediate
stages, the tape would halt and the Teletype bell would ring, indicating a checksum error.
It was then necessary to repeat the process from the beginning.

Once the programme tape had been successfully loaded, the NIC-80 could be started at the
appropriate address (usually 0) to run the programme.

Upgrading the NIC-80 . We realised almost immediately that a disk drive was going to be
essential – running the NIC-80 via the Teletype from paper tape was altogether too slow and
inefficient and limiting. Fortunately SERC agreed to fund a NIC-298 8" floppy disk system.7–9

It absolutely transformed the capabilites of our NIC-80. At the same time, we upgraded the
memory to 12K by adding a third 4K stack (for about £3500, if I remember correctly). And we
replaced the Teletype with a VDU – a standard ASCII terminal – which was much faster as well
as far quieter.

Later, when we embarked on research in stochastic nonlinear dynamics (see below) we added
further hardware and enhancements, including many items bought cheaply from (or given
to us by) other people who were upgrading e.g. to NIC-1180 or NIC-1280. These included
NIC294 Diablo 30 hard disk units,10,11 optical paper tape readers,12 and a Remex paper tape
reader/punch (a bargain from Nicolet).13 In this way we obtained 5 additional NIC-80s, all com-
plete working systems (after minor repairs and renovation) with disk drives and peripherals.

Breakdown of superfluidity and beyond . In our low temperature experiments, we quickly
found14 that the averaged ion signals took very interesting exponential shapes, rather than
being trapezoidal as expected. These effects were attributable to a second mechanism by
which the superfluidity could break down – through individual ions creating quantised vortex
rings (like microscopic smoke rings). We were able to programme the NIC-80 to extract the
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exponents and hence measure the vortex nucleation rates, which could then be compared with
theoretical expectations.

A lot of this work was done in collaboration with Frank Moss from the University of Missouri
St Louis (UMSL), who was a well-known low temperature physicist with research interests
similar to my own. He paid two sabbatical visits to Lancaster while on leave from UMSL. The
combination of Frank and the NIC-80 changed my life and my career.

Isotopically pure superfluid 4He. Frank’s first visit was in 1979. Being a vivid and somewhat
larger-than-life character he had somehow persuaded UMSL to give him an 18-month sabbati-
cal instead of a normal 12-month sabbatical. His idea was to split his time between Lancaster
and Exeter. On arrival he was able to “hit the ground running” and contributed to the research
immediately because he was already closely familiar with the NIC-80 – he had an identical
system in his own laboratory in UMSL. We had just developed a helium isotopic separation
cryostat, and we were thus able to carry out the first investigation of ion motion and vortex ring
creation in isotopically pure superfluid 4He. We discovered that even the tiny traces of the rare
3He isotope in natural helium (about 2 × 10−7) can exert a profound influence15 on vortex cre-
ation in liquid 4He, and that the creation rate is a rapid function of temperature.16 Frank then left
for Exeter. Shortly afterwards we found that the ion-vortex-ring transition could be quenched
(stopped from happening) by sufficiently strong electric fields.17

A change of direction . On his return to Lancaster several months later for the final part of his
sabbatical, I found that Frank had developed a new enthusiasm that was totally unconnected
with liquid helium or low temperature physics. He had spent a lot of his time in the Exeter
University Library and had become enthralled by a controversy that was raging in stochastic
nonlinear dynamics. The point at issue was quite technical, but of very wide applicability –
to any system whose fluctuations could be approximated by Gaussian white noise, that is,
totally random noise. Hence resolution of the matter at issue would relate to problems not only
in physics, but also in engineering, mathematics, environmental science, economics, finance,
biology and so on. The question was: what is the appropriate calculus for integrating the
Langevin equation to find the Fokker-Planck equation describing the fluctuating experimental
system? There were two basic choices: the Ito or Stratonovich calculi. Many authors gave all
their results for both calculi because they were uncertain which one to use.

What Frank realised instantly was that, by using the NIC-80, we could do an experiment to
settle the question definitively (see below). His enthusiasm was highly infectious and, in the
end, I agreed to collaborate. It led me off into an entirely fresh direction, with a whole new
world of fascinating research problems to be solved, numerous new collaborators and friends,
and a vastly enlarged perspective on science.

I remained a low temperature physicist too. Although I supported the low temperature research
with newer Nicolet products, including a NIC-1280 (strictly an 1180E) with an internal 20 MHz
digitiser and the phenomenally fast2 24-bit Fourier array processor,18 I continued to use and
develop the NIC-80 for experiments in stochastic nonlinear dynamics as described below. It
was ideally suited for this application.

3. The NIC-80 and Stochastic Nonlinear Dynamics

Ito v. Stratonovich . To perform Frank’s initial experiment, it was necessary to measure a prob-
ability density. This was at a time when many theorists believed that probability densities were
not even physical observables – so it was an ambitious project. After very extensive discus-
sions, we agreed that Frank would construct the nonlinear analogue experiment in UMSL, and
that I would write the required NIC-80 acquisition and analysis software in Lancaster. I did so,
and mailed him the result (DENSFN) on an 8" floppy disk. When he did the experiment, it pro-
vided the first observation of a noise-induced phase transition and clearly demonstrated19,20
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Figure 2: Pioneering measurement of the prehistory probability density36
ph(x , t; xf , 0) of a rare large fluctuation.

The system is subject to noisy forcing under equilibrium conditions. In the remote past (time t = −3 at the top),
the system is fluctuating about its stable state at x = −1. The large fluctuation brings it to the chosen final value of
xf = −0.7 at the present time t = 0. The optimal path is the ridge (locus of maxima) along the top of the distribution.
The distribution was created and plotted by a NIC-80, as were also the axes and tick-marks; the labels and numbers
were added by hand using a pen with Indian ink and a stencil, as was standard practice at the time.

that a continuous physical system is described by the Stratonovich calculus∗.

Lancaster Nonlinear Group . At this point, Frank and I both realised the potential we had
unleashed for solving other problems in stochastic nonlinear dynamics. We continued to work
closely together for several more years, and Frank paid another sabbatical visit to Lancaster
(1986–87) – this time, not as a low temperature physicist, but as a nonlinear dynamicist. We
had a joint NATO grant that aided collaboration within Europe, and co-edited the 3-volume
book21 Noise in Nonlinear Dynamical Systems. After that, we gradually drifted apart and mostly
worked on different nonlinear problems, with Frank eventually moving into neurodynamics. By
this time, I had a flourishing Lancaster Nonlinear Group, mostly funded by SERC/EPSRC, and
characterised by numerous international research collaborations and frequent publication in
high impact scientific journals. I retired formally in 2008, but the group is burgeoning, and I
remain an active member. It has now been renamed the Nonlinear Biomedical Physics Group
to reflect a modified emphasis under its new leader, my colleague Professor Aneta Stefanovska,
who took up her permanent position in Lancaster in 2006.

The 1991 Stochastics Library 22 brought together DENSFN and the many stochastic analy-
sis facilities that had been created subsequently – at one stage it felt as though every new
project involved the measurement of a new stochastic quantity. Details are given in Appendix
A but, basically, the Library includes provision for the measurement and ensemble-averaging
of: single-variable probability distributions;19,20 two-variable probability distributions;23,25 first
passage times, crossing-times after a trigger, sojourn times, Akito jump distributions or distribu-
tions of level-crossing counts;26,27 correlation functions;28,29 power spectral densities;31–34 two-
dimensional distributions in a variable and time;24,35 the time evolution of moments;30 phase
portraits; the pre-history probability of level-crossing transitions;36–38 and two-dimensional dis-
tributions in amplitude and phase, P(A,φ). The citations refer to a few examples of papers
where some of the routines in question were used.

∗It is now well understood – indeed obvious – that, because the noise in a real physical system cannot be truly
white, the Stratonovich calculus must the right one to use because it takes the evaluation point in the middle of the
infinitesimal interval, unlike the Ito calculus which takes it at the beginning. But it was far from obvious to many
people at the time.
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Figure 3: A prehistory probability density ph(q, t) measured by a NIC-80 under non-equilibrium conditions37 when
the nonlinear system was being driven by a periodic force (with q rather than x being used for the coordinate, and
the direction of t reversed, compared to figure 1). The top-plane compares the measured optimal paths (green
points corresponding to the ridges of the probability density) with theoretical predictions (thin continuous lines). The
final point reached by the large fluctuatons is on the system’s switching line (red). Only under these conditions is
a corral of optimal paths created, as illustrated. Here the data were again acquired and ensemble-averaged by the
NIC-80, but its Kermit was used to transfer the resultant prehistory probability distribution to an external system for
plotting and comparison with theory.

Two examples of probability densities measured with a NIC-80 are shown in figures 2 and 3.
They illustrate the optimal paths followed by (rare) large fluctuations in noise-driven nonlinear
systems, identified by measurement of the relevant prehistory probability density. Note that they
are simply illustrative, chosen from among the enormous number of interesting and scientifically
important examples that have been published.

The theory of large fluctuations in nonlinear systems predicts that, though rare, they should
all tend to take the same least-energy path in any given system. The importance of such pro-
cesses arises because nearly all of the important “events” that occur in noisy systems – e.g.
first order phase transitions or chemical reactions – come about through large rare fluctuations.
There was already a well-developed, but almost untested, body of theory – whence the impor-
tance of analogue experiments. Electrical circuits were used used as generic models of the
systems of interest, and driven by white noise. The NIC-80 would then track the fluctuations
x(t) of the system. On rare occasions, an extra-large fluctuation might take it to a pre-selected
value xf far from the system’s stable state. The NIC-80 was programmed so that, whenever this
happened, it would “grab” the immediately preceding path x(t) and add it to an ensemble av-
erage representing the prehistory probability of arrivals at xf . From the theory, it was expected
that the prehistory probability would be a clearly-defined and relatively narrow tube of paths:
the so-called optimal path would be the ridge along the top of the prehistory density. Because
large fluctuations are by definition rare, the acquisition of their prehistory distributions is slow
and laborious, often extending over a day or even a few days to build up a single distribution.
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Figure 2 illustrates a measurement of the prehistory density for (rare) arrivals of the system at
xf , under equilibrium36 conditions, thereby demonstrating the physical reality of optimal paths.
Not immediately obvious in the figure, but clear on careful inspection, the density unexpectedly
broadens before converging to the final point at t = 0, a feature that was quickly accounted for
theoretically. Figure 3 illustrates measurements under non-equilibrium conditions37 when the
system is being driven by a periodic force. These results demonstrated the physical reality of
cusps and switching lines together with critical broadening of the distribution near a cusp point
and many subtle and interesting physical details as discussed in the original paper.37

4. Lancaster Utilities for the NIC-80

Over the years, I wrote several utility programmes for the NIC-80 to add additional facilities and
to make the system more convenient to use. The more important of these are listed here and
described in greater detail in Appendices B – E.

LINKER overcomes the NIC-80’s “memory gap” between 7777 and 100000. A single command
can run a composite programme consisting of any number of files, or can move it between disks.
LINKER also provides for overlay generation. Details are given in Appendix C.

CLEAR zeroes the entire memory, apart from the disk monitor head 7600-7777.

CHECK tests the validity of data and programmes stored on floppy (NIC-298) or Diablo (NIC-
294) Nicolet NIC-80 disk systems and reports any checksum errors that are detected.

DIMON links together and runs automatically all of the NIC-80 diagnostics programmes.39

PNED is a supplementary text editor that provides facilities for extraction of text as disk files, or
for the insertion of text from files, during editing.

FBAKUP enables the copying of whole disks on single-floppy-disk7 NIC-298 systems.

DSKGEN provides for automatic initialisation of floppy disks by linking together the sequence
of routines provided by Nicolet. It saved us a lot of time.

DIABLO, FLOPPY and BOOTS are for use on dual floppy/Diablo systems. A *RUN DIABLO to
the floppy monitor transfers attention to the Diablo; and *RUN FLOPPY to the Diablo monitor
does the opposite. BOOTS provides spare bootstraps for emergencies.

FDMOVE is a utility for moving files between NIC-298 (floppy7) and NIC-294 (Diablo10) disk
drives on hybrid 12K NIC-80 systems.

PNICL implements a communications protocol that enables files to be passed between Nico-
lets. It is fully compatible with FILMOV on the NIC-1180 and NIC-1280.

KERMIT implements a communications protocol that enables files to be passed, universally,
between all kinds of computers. See Appendix D.

5. Epilogue: After the NIC-80

Capabilities of the NIC-80 . Frank Moss remarked in the mid-1980s “You can do anything with
a Nicolet” (meaning a NIC-80), and it was almost true. For example, the DENSFN programme
to measure probability densities must have been quite different to anything the NIC-80 design-
ers had considered but, given the extraordinary flexibility of the system, it was nonetheless
straightforward to implement. (The only unexpected problem arose from the design of the inter-
nal digitiser, for which certain levels were favoured over others, giving rise to strange patterns
in measured densities; we overcame this difficulty by ensemble-averaging the probability den-
sity of a triangle wave (which should have given rise to a constant level, but did not), using the
result as a “calibration” by which we could divide subsequent density measurements.) Like-
wise, when we first measured probability densities in two variables P(x , y) we had no means of
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plotting these 3-dimensional objects; but I was able to write a contour-following routine for the
NIC-80 and the corresponding (x , y) values could be taken to the NIC-80 digital-to-analogue
convertors and applied to an x − y plotter to draw the contours. Later, I also wrote a routine
for making perspective plots of the density on the x − y plotter. And the Kermit opened up new
vistas for the NIC-80 by connecting it to the outside world.

Longevity of the NIC-80 . My collaborators and I used our NIC-80s on a daily basis for 20
years, and they did everything that we asked of them. This is an extraordinarily long lifetime for
anything in the computer area, given the exponential rate of progress and development, and
it was made possible by a number of factors. First, the visionary original design by Nicolet...
Secondly, the excellent and friendly service provided by the local (Warwick) Nicolet people,
especially in the earlier stages when I constantly needed advice. Thirdly, as the years rolled by,
I became steadily more knowledgeable and expert in NIC-80 programming, and more familiar
with the hardware, so that I was almost always able to find a way of doing what was needed. In
addition, with the extra utilities (see above), the system became really easy and simple to use.

Moving on . However, all good things come to an end. For the NIC-80, the end relative to
its beginning came later than for any other computer that I know of, but it came. The NIC-
80 itself could have continued for a while longer – its speed, and the speed of the internal
digitiser, were both well-matched to the characteristics of the analogue electronic circuits that
we used for nonlinear modelling. Of course it eventually became harder to obtain spare parts,
e.g. the special diodes needed for the digitisers, but we always managed in the end. The real
problem was the disk drives. The gigantic Diablo 30s stored relatively little data. Although that
did not matter except æsthetically, they were prone to crashing occasionally unless serviced
regularly, and sometimes crashed despite regular servicing. Such crashes were often extremely
destructive: the head hit the disk and scraped off the oxide layer, sometimes right down to bare
metal. Consequently, both the head and the disk were destroyed and all data on the disk
were lost. The man who serviced our Diablos in the latter stages came from far away (Essex,
I think), so the drives were unavoidably expensive to run. Furthermore, he was already at
retirement age, and there was no reason for younger people to learn to service such ancient
equipment. The 8" floppies worked fine, but of course were slower, and they started to look
slightly ridiculous (as 51

4
"s, and then “stiffies”, came and went). They were also becoming

harder to get hold of. No doubt it would have been possible to write new software for interfacing
the NIC-80s to modern recording media... but, putting everything together, we concluded that
the time had come to move on. I did so with profound regret and a considerable sense of loss.

The replacement Stochastics Library was created by Igor Kaufman40 in collaboration with
Dmitri Luchinsky. It was initially intended to run on PCs to which Microstar digitisers41 had
been fitted, and it is extremely flexible in every respect. The system is Matlab-based and multi-
platform (Linux as well as Windows). In principle, it does everything the NIC-80 Library did, and
it has been a triumphant success.

The end of the NIC-80 saga came for me in 1997. It had been an immensely satisfying and
productive 20 years. The tally of the Lancaster Nonlinear Group and 4He Group researchers
and collaborators during this period shows that this remarkable instrument had supported the
work of 66 researchers, not only in the UK, but also in Belarus, China, Germany, Italy, Japan,
Russia, Spain, Ukraine, and USA, leading to more than 150 scientific publications in total.

Questions and comments can be sent to p.v.e.mlintok�lanaster.a.uk and are wel-
comed. The scientific papers cited as examples below are all available on request, and many
of them can be downloaded from
http://www.physis.lans.a.uk/people/peter-mlintok
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APPENDICES
APPENDIX A

The 1991 NIC-80 Stochastics Library

The Stochastics Library22 is worth discussing in reasonable detail because it gives one a good
idea of what could be done with a NIC-80. The Library consists of a suite of stochastic dy-
namics analysis programmes. Each programme is designed for a specific purpose, and is self-
contained, but shares many commands and facilities in common with the other programmes in
the Library. The programmes include –

DENSFN – ensemble-averages single-variable probability distributions,19,20 P(x)

XYDENS – ensemble-averages two-variable probability distributions,23,25 P(x , y)

FPTIME – ensemble-averages either: first passage times, crossing-times after a
trigger, or sojourn times P(t); or Akito jump distributions; or distributions of level-
crossing counts, P(n)26,27

CORAVG – ensemble-averages correlation functions,28,29 C (s)

POWSPC – ensemble-averages power spectral densities,31,32 Q(ν)

XTDENS – ensemble-averages two-dimensional distributions in a variable and time,24,35

P(x , t)

MOMAVG – ensemble-averages the time evolution of moments,30 〈xn(t)〉

PHASEP – ensemble-averages and analyses phase portraits y(x)

PREHST – ensemble-averages the pre-history probability of level-crossing transi-
tions,36–38 Ph(x , t; xf , 0)

APDENS – ensemble-averages two-dimensional distributions in amplitude and phase,
P(A,φ)

Structure of the Stochastics Library . All of the programmes use overlays, many of which
are shared in common. The programmes are bi-diskual in that they will run both with floppy7

(NIC-298) and with hard10 (Diablo-30, NIC-294) disk drives, and they are all constructed on the
same basic principles. A sequence of x(t) (and, sometimes, y(t) simultaneously) is digitized
in blocks of 1-4 K, and each of them is then analysed to produce the selected probability
distribution, which is ensemble-averaged in a separate block of memory. When the chosen
number of realisations has been processed, the resultant distribution is displayed on the CRT
and a variety of commands becomes available for analysing it and examining it in more detail.

Memory page-layout of the Stochastics Library . The twelve 1K pages of the NIC-80’s mem-
ory are used as follows –

0 - 1777 LAB-80 routines, main command block, data acquisition
2000 - 3777 LAB-80 routines, expansion facilities
4000 - 5777 Data analysis for P(x), P(x , t) etc, and stochastic command block
6000 - 7777 FPP72, disk monitor overlays, disk monitor head
100000 - 101777 Acquired x(t), overlay loading
102000 - 103777 Acquired x(t)
104000 - 105777 Acquired x(t)
106000 - 107777 Acquired x(t), file-header construction
110000 - 111777 Distribution ensemble-averaging e.g. P(x)
112000 - 113777 Overlay generation, replica construction
114000 - 115777 Loading linker, NICBUG, BOOTS, overlay loader
116000 - 117777 Absolute addresses, command initiation
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where all the the addresses are in octal. The Nicolet LAB-80 programme,6 which occupies
0-3777, has been extensively modified so as to incorporate extra commands and to interface it
to the larger system of which it becomes one part.

Page 114000 is identical for all programmes in the Library. The standard Nicolet octal de-
bugging programme1 NICBUG is incorporated (114632 - 115365) just above the loading linker
(114000 - 114631), and can be used to examine or modify the contents of particular addresses
and generally monitor the operation of the programme. The disk7,10 and NICOLODEON1 HSR
bootstraps, which occupy 115366-115476, are for emergency use. The entry points, using the
switch register (or NICBUG), are: 115367 to read a floppy monitor head; 115414 to read a
Diablo head; and 115436 to read in the NICOLODEON paper tape1 on the high speed reader
(HSR). Page 114000 also includes the system overlay loader, and an overlay linker that enables
one overlay to call another.

Page 116000 has first and last sections that are shared by all programmes in the library. The
first part (116000 - 116577) contains standard routines for printing integers or floating point
numbers, displaying data blocks of arbitrary size, displaying horizontal or vertical lines, and for
double-precision acquisition. The last part (117660 - 117776) consists of absolute addresses
for expansion, least-squares fitting of data, plotting data, etc, which are used by the various
overlays (see below). Addresses 116600 - 117657 are available for normal programme use;
and 117777 is reserved as an indirect jump address for NICBUG.

Overlay loading . The overlays are all loaded at 100000 (i.e. at START = 0, as set on the
buttons). Some of them are patched together during assembly of the programme, but the
majority are free-standing. There is provision for up to 36 overlays: up to 26 standard ones
named STLAYA, STLAYB, STLAYB ... ; and up to 10 programme-specific overlays, which are
given names formed from the first two letters of the programme name, suffixed by “LAY" and
an alphabetical letter. The overlays for FPTIME would therefore be: FPLAYA, FPLAYB, etc.
The overlay name is written onto the start and end of the overlay itself, in each case, and
subsequently checked by the loader in order to prevent errors. The overlay generators STDGEN
(or STDOVR for generation on the same disk) and e.g. FPTGEN (or FPTOVR), usually on
pages 0 and 112000 respectively, create the overlays from a series of feedstock files loaded at
100000. The latter are called STCOD1, STCOD2 ... for the standard overlay feedstock, or are
given names made up of the first two letters of the programme name suffixed by “-COD" and a
number (e.g. FPCOD1, FPCOD2, etc for FPTIME). They are constructed by putting together a
selection of standard 1K modules, including those listed below.

Standard overlays . The following modules are used in common by most of the programmes
in the Library –

• PFILE : contains the routines for file storage and loading, auto-incrementation of file-
names, construction of file-headers, and so on. It requires the presence of a loading
linker on page 114000. (Usually generated as STLAYA).

• CALADC : carries the routines for calibration of the digitizer, as called by the CD com-
mand. It also holds the double (40-bit) and triple-precision (60-bit) routines used for fast
averaging over the abscissa and ordinate under the AH and AV commands. (Usually
STLAYB).

• LABCOM : incorporates: the re-structured LAB-80 commands (that combine two or more
of the original ones, e.g. TM replacing PT, NT, AR); the code to implement initial entry
to the programme (types the programme name, plus an HE help message, and asks for
the date); and the text of the command summary of the standard LAB-80 commands.
(Usually STLAYC).

• PBOX : is mainly concerned with standard plotter facilities. It contains routines for: plotting
axes; drawing a box around the plotter area and adding ticks to it; identifying the plotter
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ranges; and calibrating the plotter and CRT display. The latter facility has been moved
from page 0, where Nicolet placed it, in order to make space for the EM emergency
recovery routine. (Usually STLAYD).

• PCRASH : carries the collection of routines accessed by the DR data-recovery command.
It facilitates the recovery of data from a corrupted disk following a bad software “crash". It
also allows for a file that has been deleted in error to be restored to health again. (Usually
STLAYE).

• SETLEV : provides the facilities called by the SL level-setting command. It also includes
an externally callable arrow display for the identification of levels or distributions. (Usually
STLAYF).

• HEDPRN : contains the routines for interpreting and printing out the information in the first
(standard) section of a data file-header, and the code for implementing the O command
to reset the data-processor parameters to their original values. (Usually STLAYG).

• HEDFIN : finishes off the standard header printing. It must follow in sequence immediately
after HEDPRN. (Usually STLAYH).

• LSFITS : holds the routines needed for least-squares fittings (straight lines, exponentials,
Gaussians, quadratics, Lorentzians). The various summations, and all of the final results,
are placed in absolute addresses on page 116000. (Usually STLAYI).

• XYDISP : carries the routines for displaying 2-D cross-sections through 3-D distributions,
and for displaying 1-D slices with cursors. (Usually STLAYJ).

• XYPLOT : holds the contour-plotting routines for 3-D distributions, both for closed and
open (terminating at a boundary) contours. A 64 × 64 matrix is assumed. (Usually
STLAYK).

• PHASE : is used in particular by the PHASEP programme. It computes phases relative
to a trigger and phase differences, for sinusoidal signals at the ADC inputs.

• XYZPLT : is a 3K self-contained overlay system for three-dimensional plots of data from
XYDENS, XTDENS, PREHST and APDENS. (Usually STLAYL, M, N).

• DPAVG : contains: the routines for double-precision data acquisition; the comparison
routines for ADC inputs A and B, computing the amplitude-equalising factor and offsets;
and the routine for finding the number of points per quasimonochromatic noise (QMN)
oscillation. The module loads initially at 100000 as a standard overlay, but immediately
relocates itself to 2000 so that data memory can be used for output. (Usually STLAYO).

• COMCOM : contains a variety of code moved out of the LAB80 root. It loads initially at
100000 as a standard overlay, but relocates and runs on page 2000. All initially unrecog-
nised commands entered in the LAB80 main command block come here for checking,
which is why there is a slight pause before the “??" expostulation when a mistake is
made. (Usually STLAYP).

• PPLOT : carries routines for plotting the contents of one x(t) block against the contents
of the adjacent one; and for a CRT display of the same kind. (Usually STLAYQ).

• EVENT : provides the facility for capturing and ensemble-averaging rare events, such as
noise-induced explosions, under the XP command. It loads as a standard overlay, but
runs on page 2000. (Usually STLAYR).

There are also two pieces of code that are used during assembly for the creation of programme-
specific overlay feedstock files -

• LSCALC : only occupies part of an overlay (100000 - 100377). It provides the compari-
son displays for fitted curves, data, and cursors. The code for numerical readout of the
physical quantities corresponding to cursor positions and contents, positions and height
of maxima, peak-widths etc is patched in separately by each individual programme to
complete the overlay. (Usually e.g. FPLAYB).

• PLOTS : likewise only fills part of an overlay. It provides the plotter command block
and interface to PBOX, XYPLOT and XYZPLT (see above). The code for calculation of
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numerical quantities, and for plotting the actual distribution, is patched in by each of the
individual programmes. (Usually e.g. FPLAYD).

APPENDIX B
General Utilities for the NIC-80

Some general utility programmes for the NIC-80 are described briefly below. LINKER and
KERMIT are described separately, in Appendices C and D respectively

CLEAR may be used to zero the entire memory, apart from the disk monitor head 7600-7777.
It enables code to be patched and loaded onto areas that are free of extraneous material,
during programme construction. The storage limits of the programme are: CLEAR 0-27; 0.
It may be used on both floppy7 (NIC-298) and Diablo10 (NIC-294) disk systems. Following a
*RUN CLEAR command, the programme first re-locates part of itself to the scratch loading area
(7760-7774) of the monitor head. The latter section of the programme then clears 0-7577 and
100000-117777 and exits to the disk monitor.

CHECK is used to test the validity of data and programmes stored on floppy (NIC-298) or
Diablo (NIC-294) Nicolet NIC-80 disk systems. To run the test, enter *RUN CHECK (return).
The programme allows an optional disk change; following a return, it then loads in sequence
all of the files stored on the disk, printing their names as it does so. If any checksum errors
are detected, these are reported. If there are no errors on any of the files, CHECK will print
“ALL OK" before finally exiting to the disk monitor. The programme occupies the bottom 1K
of the NIC-80’s memory, with storage limits: CHECK 0-1777; 0. It incorporates within itself
both NICBUG1 and the standard set of spare bootstraps (see below instructions for DIABLO,
FLOPPY and BOOTS) re-located from page 114000. In operation, it uses all available data
memory (100000-117777 in a 12K system), and so will obliterate the standard bootstraps that
may have been left by a previously run programme on page 114000. For emergencies (e.g.
failure to raise the monitor by starting at 7600, due to corruption of the monitor head), there is a
hidden command block after the initial “INSERT DISK FOR VERIFICATION MESSAGE", which
gets printed when the system is started at address zero (e.g. by pressing the data-processor
start button). The following commands are then (secretly) available:

B – call NICBUG, the standard octal debugging programme
I – identify version of CHECK
M – read a new monitor head from the disk in use
N – read in the NICOLODEON paper tape on the HSR
↑Q – CTRL/Q quit to the disk monitor

If the initial message is not printed, it may still be possible to access the bootstraps by use of
the switch register. Start the processor at 1367, 1414 or 1436 to read a floppy or Diablo monitor
head, or read in the NICOLODEON paper tape respectively.

DIMON links together and runs automatically all of the diagnostics programmes listed in the
NIC-80 service manual.39 That is, it runs it turn without operator intervention: the Shift Test,
Jump Test, Operations Test, Worst Pattern Generator Memory Test, and the relevant (floppy7

or Diablo10) Disk System Exerciser Test. When, as often happens, the operator is uncertain
whether there is a really problem or not, but just seeks reassurance, Dimon saves a huge
amount of time. If any errors are found, they are reported, and the operator can intervene at
that point.

PNED is a supplementary text editor that provides facilities for extraction of text as disk files,
or for the insertion of text from files, during editing. These possibilities are not provided by the
standard Nicolet text editor42 NED in either its floppy (FNED) or Diablo (DNED) versions.
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On first entry, the programme calls the Disk Command Interpreter (DCI),7,10 which prints a “@",
and awaits instructions. The main command line should then either be of the form
@FILE6.A/FILE7.A:I
for insert mode; or of the form
@FILE6.A:E
for extract mode. In the former case, FILE6.A is to be modified by the insertion of additional
lines of text in the form of one or more disk files; the edited result will be called FILE7.A. In the
latter case, FILE6.A is not edited, but selected lines of text are to be extracted and stored as
separate disk files.

In insert mode, PNED prints the text line that is currently being pointed at (line 1, on first entry),
for information. It then asks for the line number above which text is to be inserted; and for the
filename of the insertion, which should be entered after the usual DCI prompt @. The process
then repeats, for as many text insertions as are required. When editing is complete, a CTRL/Q
should be entered, at which point the edited text will be stored on disk under the output filename
specified in the main command line. Note, first, that the line numbers of the text insertion points
should have been identified prior to entry by use of DNED or FNED in the usual way. Secondly,
insertions must be made sequentially, in line order; PNED always moves forwards through the
text, and cannot go backwards. All line numbers refer to the original input file (FILE6.A above)
and take no account of insertions that have been made.

In extract mode, PNED will again print the current text line and await instructions, in this case
for details of the text to be extracted: for the initial and final line numbers; and for the filename
under which the extracted text is to be stored on disk. The latter is an output file, so that its name
must be preceded by a slash, in accord with the usual DCI convention (e.g. “/EXTRCT.A"). The
process then repeats for as many text extractions as are needed. Finally, entry of a CTRL/Q will
exit PNED and restore control to the disk monitor. Note that, as with insert mode, extractions
must be made sequentially in line order and the relevant line numbers must have been identified
using DNED or FNED prior to entry.

FBAKUP enables the copying of whole disks on single-floppy-disk7 NIC-298 systems for 12K
NIC-80s. The storage limits are FBAKUP 0-1074; 0.

Following a *RUN FBAKUP command, the programme instructs the operator to transfer disks
as required. All disk swaps are completed with a carriage return. If the source disk is com-
pletely filled, seventeen disk swap cycles will be required, but proportionally fewer cycles will
be needed for partly filled disks. If the wrong disk is inadvertently inserted at any stage, an
error message is given.

When the destination disk is first inserted, its directory is immediately killed in order to avoid
misleading results occurring if the transfer is terminated prior to completion. For the same rea-
son, the directory of the source disk is the last item to be transferred, after all the data and other
files have been written to the destination disk. Any checksum errors detected when reading the
source disk are reported, but the transfer is nonetheless be completed. On completion of all the
transfers, the programme asks whether or not the destination disk is to be verified. If the oper-
ator answers with a Y, each file will be loaded in turn, and all checksum errors will be reported.
If there are none, the programme will print “ALL OK" before control returns to the disk monitor.
Files that were already corrupt from the source disk, which have already been reported as such
during their transfer to the destination disk, will not be reported again; the verify option simply
tests the validity of the storage process on the destination disk. If the operator enters an N, the
disk will not be verified and, instead, control will be returned to the disk monitor immediately.

DSKGEN provides for automatic initialisation of floppy disks by linking together the sequence
of routines provided by Nicolet. It saved us a lot of time, as the original sequence of operations
(see pp 3-4 and 60 of the NIC298 manual7) was quite onerous and time-consuming for the user.
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A sequence of floppy disks (e.g. a new box of 10) can be initialised with a *RUN DSKGEN, after
which the programme prompts for disk changes, as needed. If errors are detected when a
disk is being tested, they are reported and the user is given the choice of re-testing that disk
immediately, or proceeding to initialise the next one. At the end of the procedure, each disk has
stored upon it SYSGEN, WARLK2, CHECK and DIABLO; WARLK2 will already have been run,
so that there will also be a backup directory ///DIR at the end of the data area, stored on the
final track.

Because DSKGEN has to incorporate within itself: FORMAT,7 DEXER,7 NICBUG,1 SYSGEN,7

WARLK2,43 and CHECK (see above), it uses the whole 12K of the NIC-80’s memory, with
WARLK2 initially having to be stored in two separated sections. The code is swapped around
as necessary in memory as initialisation proceeds. Initially, the programme page layout is -

0-577 run area available for FORMAT and DEXER
600-7577 upper section of WARLK2
7600-7777 disk monitor head
100000-101777 DSKGEN loading linker, DEXER work area
102000-103777 DGNGEN generating linker, DEXER work area
104000-104577 lower section of WARLK2
104632-105365 NICBUG
105366-105376 spare bootstraps for NIC-298, NIC-294, HSR NICOLODEON
106000-107777 DSKGEN programme code
110000-117577 SYSGEN, incorporating DEXER and FORMAT

There are two programme-linkers. DSKGEN is used to run the programme from a library disk;
DGNGEN is used to move the whole system from one library disk to another. The linkers in
question are created by RLINK, an earlier version of LINKER. The filenames and storage limits
of the DSKGEN system are:

DSKGN1 – 600-7577; 7600
DSKGEN – 100000-100617; 100000
DGNGEN – 102000-102617; 102000
DSKGN2 – 104000-117577; 106000

The DSKGEN sequence contains a number of pauses, during which the processor appears
to be “dead" for several seconds at a time. These are unnerving for an operator using the
programme for the first time, but are necessary to allow time for the head load pad to disengage.

DIABLO, FLOPPY and BOOTS . The programmes DIABLO and FLOPPY are for use on dual
floppy/Diablo systems – a configuration that seems not to have been envisaged by Nicolet, but
which we found very convenient and efficient: running acquisition/analysis programmes from
the Diablo resulted in nearly-instantaneous overlay loading, so was ideal for the heavily-overlaid
Stochasics Library programmes; but storage of results and data was better done on floppies
which could be stored much more conveniently and which were less prone to crash. DIABLO
and FLOPPY enable the disk being addressed to be changed. Thus, a *RUN DIABLO to the
floppy monitor will transfer attention to the Diablo; and *RUN FLOPPY to the Diablo monitor will
have the reverse effect.

Both programmes are manifestations of a short piece of code called BOOTS (115366 - 115476)
which is built for crash recovery purposes into all of the stochastics library software, and into
many of the other Lancaster programmes for the NIC-80. They are identical except for having
different starting addresses, the storage limits being:

FLOPPY: 115366 - 115476; 115367

DIABLO: 115366 - 115476; 115414
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Also included in BOOTS, and hence in DIABLO and FLOPPY as well, is the NICOLODEON
bootstrap1 for the high speed paper tape reader. Where BOOTS is incorporated into a larger
programme, the bootstraps may be accessed by subroutine calls to addresses:

115366 – to read a floppy monitor head

115413 – to read a Diablo monitor head

115435 – to read in the NICOLODEON tape on the HSR

Alternatively, the processor may be started at address 115367, 115414 or 115436, respectively,
by use of the switch register. Because the bootstraps (unlike the abbreviated versions in the
Nicolet manuals) are unmodified by use, they can be accessed as many times as necessary,
on a succession of different disks if need be.

In a few cases, BOOTS was re-assembled on a different page of memory for particular pro-
grammes, but using the same page-relative address: for example, in DSKGEN BOOTS starts
at 105366; and in CHECK at 1366. The start addresses of the individual bootstraps are similarly
modified.

FDMOVE is a utility for moving files between NIC-298 (floppy7) and NIC-294 (Diablo10) disk
drives on hybrid 12K NIC-80 systems. The storage limits are 110000-117777; 110000. The
programme can be started with a *RUN FDMOVE command from either the floppy or the Diablo
disk monitor. Outline operating instructions are contained within the programme itself and can
be printed with a CTRL/H.

After the “@" prompt, the name of the file to be transferred is entered, immediately followed by
an “.F" or “.D" option, and closed by a carriage return. The option character is used to select
the source disk , either floppy or Diablo respectively, from which the file is to be read, it will, of
course, then be transferred to the other disk. (The FDMOVE syntax necessarily deviates from
the standard Nicolet convention of “-D1", “-D2", etc, because “-D1" would refer ambiguously
both to the default floppy and to the default Diablo disks). After the first file has been transferred,
the system will prompt for the filename of the next one, and so on.

Transfers can be of single, named, files; or of groups of files whose names match a mask. In
the latter case, a “∗" can be used to represent any first or last triad of characters within the (6
character) filename, and a “?" can be used to represent any individual character. To transfer
only the core image files, a “∗∗", or a “??????", may be entered; and so on. If the destination
disk runs out of space, the system will say so and wait for another disk to be inserted.

Exit from the programme may be effected with a “CTRL/D", “CTRL/F" or “CTRL/Q", which cause
jumps to the Diablo, floppy or original disk monitors respectively. These three control characters
are read and acted on at any of the points where the programme is awaiting keyboard entry.

FDMOVE occupies 110000-117777 and starts at 110000. On first entry, it attempts to read (160
word) monitor heads from both disks, and it places these at 117400 and 117600 respectively.
These heads can then be swapped very rapidly into their run positions at 7600, whenever
required. Only if both heads have been read successfully, without checksum errors, does the
system proceed to the main body of the programme; otherwise it will either “hang", or it will exit
immediately to the monitor with an appropriate error message.

The directory of the source disk is read and held at 0-1777 (floppy), or at 0-2777 (Diablo); the
usual 4000-7577 (floppy) or 3000-7577 (Diablo) memory blocks are used for DIRFUN and for
the directory of the destination disk. The loading area for the files to be read to and written
from is 100000-105777 corresponding to 3 floppy disk records (of 2000 words) or 2 Diablo disk
records (3000 words). Where files are longer than the loading area, they are normally trans-
ferred in two or more separate sections of up to 6000 words and stored on sequential records
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on the destination disk. Core image or assembler binary files are treated in this straightfor-
ward manner; ASCII files, however, require special treatment because of their record-related
structure.

Source files prepared by the disk editors (e.g. by FNED or DNED) consist of continuous strings
of 8-bit ASCII characters, packed at five characters per 20-bit word (PACASC). The character
strings end at the end of a line (i.e. at a CR), a few words before the end of each record, and
are terminated with a series of form-feed (214) characters, so as to complete the current pair of
words. Because of the mismatch in size between the Diablo (3000 word) and floppy disk (2000
word) records, an ASCII file cannot simply be transferred to a space of the same size on the
other disk: the record terminators would obviously end up in the wrong places. In transferring
ASCII text files, therefore, the PACASC is unpacked to standard 8-bit characters, the existing
record terminators are removed, and the text is re-packed at the required buffer size with new
terminators being added at the end of each record. The total number of records occupied will,
of course, be different on floppy and Diablo disks.

PNICL is the NIC-80 version of a communications protocol that enables files to be passed
between Nicolet data-processors. It is fully compatible with FILMOV on the NIC-1180 and NIC-
1280, and will configure itself for either floppy (NIC-298) or Diablo (NIC-294) disk drives used
with the NIC-80.

This utility was kindly provided (sourcecode) by Don Parker of Nicolet in 1985 as a “develop-
ment programme" (i.e. an unfinished version), NICL. After the correction of a couple of bugs, it
was found to work well; the corrected version is called PNICL to distinguish it from the original.

The data link passes between the RS232 B-channels of the two data-processors. These two
sockets should therefore be joined, crossing over the transmit and receive wires, and making
sure that the B-channel baud rate is the same on both machines. Following a *RUN PNICL
command, the programme will announce itself and ask whether the user wishes to receive (R)
or transmit (T) a file.

If receiving a file, PNICL will ask for a filename or an immediate return: in the latter case, the
received file will retain its original name; in the former case, it will be stored on disk under
the new name provided by the user. Following a return, the system will wait to receive the
promised file. While waiting fruitlessly, a “!" will be printed periodically; whenever a packet (of
255 bytes) is received successfully a “." is printed. A “?" indicates a corrupted packet and a “#"
a re-transmission.

When transmitting a file, PNICL will ask for the file or group name. Either one file may be
named, or a mask may be entered with a “∗" to represent the first or last (if a 6 character name)
triad of characters, or a “?" to replace any individual character. All files matching the mask will
then be transmitted. A “." will be printed each time a transmitted packet is acknowledged as
having been successfully received. A “∗" indicates that the last packet was corrupted, and a “#"
a retransmission.

When the file transmission or reception is complete, PNICL will return to its initial “RECEIVE
(R) or TRANSMIT (T)" query and wait for further work. More file transfers may be implemented,
or a CTRL/Q may be entered to exit PNICL and restore control to the disk monitor. One or more
CTRL/Qs may also be used to abort a file transfer session at any time.
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APPENDIX C
LINKER for NIC-80 programmes

LINKER is a programme-linker for NIC-80s with either hard or floppy disk systems. It enables
groups of programmes to be stored, loaded and run as though they consisted of single files.
There is also an option to facilitate the generation of overlay programmes.

Principle of operation . LINKER functions by generating a short linking programme which
is automatically stored on disk under a name provided by the operator. Whenever this linker
is subsequently called into core and started, it immediately loads all the separate sections of
the programme which is being consolidated. Then: either the programme itself is started; or,
alternatively, the programme (plus linker) is first stored automatically on a new disk followed by
overlay-generation, if required, and then started. Because the linker is always called from disk
immediately prior to being run, no disadvantage need arise from its being positioned in a region
of memory where it will subsequently be overlaid by data when the consolidated programme is
in use (but see also applications note 4, below).

The programme will adjust itself automatically at configuration time for either NIC-294 (Diablo)10

or NIC-298 (floppy)7 disk systems. It can be run on any pair of pages of memory outside the
monitor swap area provided only that it is always loaded and started on a page boundary.

Loading and initial storage of LINKER from paper tape. LINKER should be loaded into core
from the binary paper tape in the usual way, using the *BIN command. After raising the monitor
the programme may then be stored by entering *STO LINKER 100000-103077; 100000.

Starting LINKER . If the linker is subsequently to be operated on page 100000, LINKER may be
started immediately by means of a *GO 100000 or *RUN LINKER command. If, however, the
linker is required on a different page of memory, it will be convenient to commence by relocating
LINKER to the page in question. For example, a linker could be created on page 112000 by
entering the commands *LOA LINKER 112000 followed by *GO 112000.

Configuration procedure . Immediately on being started, LINKER will call in the Disk Com-
mand Interpreter (DCI)7,10 to allow configuration with the names of up to five files which are to
be linked. Following the @ prompt, the user should enter: a slash; followed by a name chosen
to represent the composite programme; followed by the names of the files to be linked; followed
by an option character (D, G, L, 0 or T: see below). The filenames should all be separated by
commas without any embedded spaces. For example, if three files ROTON1, ROTON2 and
ROTON3 are to be loaded together, effectively forming a composite file to be called ROTON,
the command line would be
@/ROTON,ROTON1,ROTON2,ROTON3:L [return]
The configured front section of LINKER (632 octal words for the D, L and T options; or 1716
words for the G and O options) will then be stored on disk under the selected name, i.e. ROTON
in the above example. At any time subsequently, the DEMON command *RUN ROTON will
cause the three linked files (which must, of course, already be resident on the disk) to be
loaded into their usual positions in core. What happens next is dependent on the option that
has been chosen.

The loader (L) transfer (T) and dual (D) options . The linkers made with these options are
designed to be short enough to coexist on the same page of memory as NICBUG (which starts
at relative address 632). If the L (loader) option was chosen, the processor will be started
at the start address of ROTON1. If the T (transfer) option was chosen the programme will
type SWAP DISKS. A carriage return will then cause the composite programme to be stored
automatically on the new disk (as separate core-image files ROTON, ROTON1, ROTON2 AND
ROTON3). Any pre-existing files with the same names will be deleted. The processor will be
started as before at the starting address of ROTON1. If the D (dual role) option was chosen,
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the programme will print the query TRANSFER OR RUN (T or R): and the user can respond
with a T or R according to choice.

The G (overlay generation) option . The G option enables the linker to generate and store a
series of overlays from the code placed in one or more overlay feedstock files. When this option
is used, the programme assumes that the second filename configured by the DCI is the overlay
feedstock file and, furthermore, that any additional feedstock files will have the same name with
its final (numeric) character incremented. (With the G option, because of this incrementation
feature, the second filename must have exactly six characters; the other filenames can have
fewer characters). A suitable command line for the G option would therefore be
@/ROTGEN,ROCOD1,ROTON2,ROTON1:G [return]
where: ROTOGEN is the name of the linker to be created; ROCOD1, ROCOD2, ROCOD3
... are the names of the feedstock files; ROTON1 and ROTON2 are the root sections of the
programme.

In the above example, the ROTGEN linker will first look up and store the directory data of all the
filenames configured (including the data for ROCOD2, ROCOD3 ... which have been implicitly
specified by choice of ROCOD1 as the second name entered). The files ROCOD1, ROTON1
and ROTON2 are then loaded and a disk swap requested. When a new disk has been inserted
and a carriage return entered, its directory is examined and entries made for all of the files and
overlays that are to be stored. The explicitly specified files (ROTGEN, ROCOD1, ROTON1,
ROTON2) are then written to the disk; ROCOD1 is broken up into separate 1 K overlays and
these, too, are written into the spaces that have been prepared for them. A disk swap is
requested, and ROCOD2 is dealt with in a similar manner; and so on, until all of the feedstock
files have been both stored and broken into overlays .

In selecting names for the overlay sequence, LINKER uses the first two characters of the first
configured filename sufficed by -LAYA, -LAYB etc. In the above example, the overlays would
therefore be named ROLAYA, ROLAYB, ROLAYC... Up to a maximum of 26 overlays can be
created in this way. Before being stored, each overlay is “tagged” with its name and a 770000
UNPCK terminator deposited on both its first and its last three words.

After the files and overlays have all been stored, the processor is started at the starting address
given to the second file (ROCOD1 is the example above) to be configured.

The storage data for the files in the above example, with the ROTGEN generator-linker config-
ured on page 112000 with
*LOA LINKER 112000
*GO 112000
followed by the DCI command line as already specified, might therefore have been:
ROTGEN (automatically stored by LINKER as 112000-113716; 112000)
ROCOD1 100000-111777; 0
ROCOD2 100000-111777; 0
ROTON1 0-7577; 0
ROTON2 114632-117777; 0
ROTON (automatically stored by LINKER as 114000-114631; 114000)

With these directory data, there would be a total of 10 overlays called ROLAYA-ROLAYJ, and
the processor would be started at 0; ROTON would be a loader-linker previously configured
on page 114000 with @/ROTON,ROTON1,ROTON2:L and used to RUN the programme on
subsequent occasions from the disk in question.

The O (overlay generation only) option . The O option creates a linker that will load the files
and create a sequence of overlays on the same disk. Its effect is identical with that of the G
option except that no disk swap(s) is (are) requested, and no files are stored on the disk except
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the overlays. The processor is then started at the starting address of the second filename, as
before. Linkers made with the O option are intended for use on dual drives where all of the
main files and feedstock files can be transferred quickly (without needing to do disk swaps), but
where it is still necessary to generate the overlays before the programme in question can be
run.

General application notes . Note that –

1. LINKER operates in conjunction with single-disk systems, or with Unit I in dual-disk sys-
tems.

2. The linkers created by LINKER are themselves also fully relocatable to run at the start of
any page outside the monitor swap area.

3. Because LINKER links only the names of the files in question, and does not modify them
in any way, they can still be loaded individually by use of DEMON, if desired. The neces-
sary directory data is always read at run time. Thus, the files themselves can be modified
at will without any consequent necessity to create new linkers.

4. With the D, L and T options, and where there is sufficient memory available to retain the
linker in core after use, while the consolidated programme is in action, it can sometimes
be convenient to add a “self-storing" transfer command to the command lists of the rel-
evant applications software, arranged so as to cause a jump to 100045 (or equivalent
address if the linker is operating on a different page), thus entering at the “SWAP DISKS”
stage and moving the (configured) programme to a new disk. If a virgin copy of the pro-
gramme is to be transferred then the jump should, of course, be to 100000 (or equivalent
address). (In the case of the G option, it will usually be necessary to reload and start the
linker/generator, in order to move the overlay feedstock files etc to the new disk.)

APPENDIX D
KERMIT for the NIC-80

Introduction . The NIC-80 KERMIT provides a basic implementation of the packet-exchange
protocol described by Frank da Cruz.44 It is applicable to NIC-80s with 12K of memory and
either a floppy7 (NIC-298, NIC-299) or hard10 (NIC-294/Diablo 30) disk drive. KERMIT can
be used to transfer programmes and data between NIC80s and external computers, using the
RS232 B-channel. It uses standard sized packets; and innovations such as sliding windows,
repeat-prefixing, or 8th-bit-prefixing have not been implemented.

Command summary Once the programme has been installed and started with a *RUN KER-
MIT, the following commands are available –

B - call NIGBUG (octal debugging programme)
C - connect to external system (dumb terminal mode)

↑G - return to command block
D - do a directory listing
E - set external echo (for a Unix machine)
H - help: print command summary
I - toggle indicator symbol printing and packet archiving on/off
K - kill (switch off) external echo
L - login on remote system
M -return to DEMON monitor (same as Q)
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N - print notes on operation
P - set KERMIT parameters (future implementation)
Q - quit, return to DEMON monitor (same as M)
R - receive programmes or data from external system and file them on disk

↑G - unconditional return to command block
↑X - abort transfer of current file
↑Z - abort transfer of file series
CR - retransmit last packet, and continue

S - send programmes or data to external system and
file it on disk (with ↑G, ↑X, ↑Z and CR as for R command)

T - toggle RS232 B-input off/on
U - configure username and password (for L command)

Details of individual commands are given below.

Data formats . Files sent from the Nicolet are always sent as text files to the external system,
but in two different formats, depending on whether they start off as text files or core-image files.

Text files , which have an .A extension to the filename, are held on the NIC-80 in the form of
packed 8-bit ASCII, with five characters per pair of 20-bit Nicolet words. Before transmission
to the external system they are unscrambled, and then sent as a sequence of 7-bit ASCII
characters (i.e. with Nicolet’s bit-7 removed) either in the usual Nicolet upper-case, or in lower-
case, as appropriate. The file will therefore appear on the external system in readable form
and, if necessary, can be edited there before being returned to the same (or a different) Nicolet.

Non-text (core-image) files are sent to the external system in the form of decimal integers,
one per 20-bit word, separated by commas, with a carriage-return/line-feed after every eighth
number. This is a convenient format for FORTRAN, and is readily converted to whatever other
format may be needed by any particular plotting package. Thus, core-image files such as
specta and other forms of averaged data can be readily be analysed, manipulated, edited and
plotted on the external system. Nicolet programmes are also core-image files, but obviously
mean nothing outside the Nicolet. Nonetheless, they can be transmitted, held on an external
system, and sent to a different Nicolet or returned to the original one, where they are repro-
duced in identical form as 20-bit integers.

All files sent to an external system, either text or integer, have a first line added consisting of
three decimal integers. These carry relevant directory information, and represent respectively:
the length of the file, in 20-bit words; the load address in the Nicolet; and the programme
starting address. One or more of these numbers will be used by the receiving Nicolet to indicate
progress and to make an appropriate directory entry once the file has been stored. Where, for
some reason, a non-Nicolet file (or one not previously transferred by KERMIT) is to be sent to
a Nicolet, a first line containing three appropriate numbers separated by commas should be
edited into the start of the file before it is sent.

Conversion of filenames . Filenames on the NIC-80 are held as packed 6-bit ASCII, with a
maximum of six characters before the extension. The names are converted and transmitted to
the external system as 7-bit ASCII, in lower case to conform with unix conventions. When a file
is received by the NIC-80, its name is converted to the packed 6-bit format. Characters after
the sixth are ignored. So also are any points (periods) unless these are followed by an upper-
case or lower-case “A", “B" or “C"; which are treated as filename extensions and converted to
upper-case if they are not that already. An “A" extension implies that the incoming file will be
treated as a text file. It will be converted and stored in standard form as packed 8-bit ASCII,
which can subsequently be read or edited using one of the NIC-80 editors (e.g. NED or FNED).
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Dumb terminal mode (C, ↑G) Following the C (connect) command, the system enters its
dumb terminal mode. Any characters entered at the keyboard are transmitted over the RS232
B-channel to the external system; any incoming characters received on the B-channel are sent
to the terminal and printed or displayed on the VDU screen. Thus it is straightforward to login
to the remote system, in the usual way, if it is e.g. a mainframe or workstation. Once the remote
system has been prepared for receiving or sending a file (see sections 5 and 6 below), control
can be returned to the KERMIT command block by entry of a ↑G.

In dumb terminal mode, conventional (XON/XOFF) flow-control is operative. Thus the incoming
data stream can be stopped by entry of a ↑S (assuming that the remote system follows the same
protocol), and restarted again with a ↑Q. Likewise, the remote system can interrupt and restart
the data stream from the NIC-80.

In practice, large quantities of data (including login messages etc) often arrive very fast imme-
diately after logging in to a mainframe. To avoid loss of characters caused by buffer-overflow in
the Nicolet under such conditions, it is important that the baud-rate setting of channel-A should
be equal to or higher than that of channel-B: see also Appendix E.

Sending files to the external system (S) . To send a file to an external system the usual
procedure is as follows. First login, using dumb terminal mode as described above. Activate
the remote Kermit and set it into receive mode, e.g. by typing “receive". Return to the NIC-80
KERMIT with a ↑G, and enter the S send command. The system will ask for the name of the
file to be sent, which should be entered at the @ prompt. If the user does not respond to the
prompt, the system will eventually time-out and jump back to the command block. The same is
true at all points where user-input is awaited except of course in the command block itself.

Once the two Kermits have made contact, and transfer of the file has started, progress can be
monitored by watching the arrow on the CRT display as it advances from left to right across the
screen. In the case of text files, which are always filed as complete disk records but usually only
occupy part of them, progress of the arrow will tend to underestimate the proportion of the file
that has been transferred; the transfer progress of core-image files will be indicated precisely.

On completion of the file transfer, the system will ask whether any more files are to be sent. If
the user answers with a Y, the @ prompt will appear for entry of the next filename; and if he or
she answers with an N, control will return to the KERMIT command block. Multiple file-transfers
can often be effected conveniently by means of a joker/wildcard convention. One or more “?"s
can be used to replace one or more characters when entering the filename and/or extension
(and the usual Nicolet “∗" can also be used in place of the first or second triad of characters).
All files whose names match the corresponding mask, where the “?" is assumed to represent
any character, will then be sent to the external system.

If necessary, transfer of the current file can be aborted with a ↑X, and transfer of a file series
can be aborted with a ↑Z, provided of course that the external system supports these facilities.
Alternatively, a ↑G, can be entered to force an unconditional return to the command block. If
the packet exchange somehow becomes stuck during file transfer, entry of a carriage return will
cause the last outgoing packet to be re-sent, and may possibly get the transfer started again.

Receiving files from the external system (R). To receive a file, after one has logged in and
activated the remote Kermit on, the normal procedure is as follows. Place the remote Kermit in
send mode, e.g. with command “send filename" where filename is the name of the file that is to
be sent to the Nicolet, return to the local KERMIT with a ↑G, and enter the R receive command.
Once the transfer has started, the progress arrow will be seen advancing across the screen as
described above for the S command; the arrow will be fainter, however, because it is displayed
only during sending packets which, for receive mode, are relatively short acknowledgements of
data packets received.
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If a file with the same name as the incoming one already exists on the Nicolet’s disk, the usual
“DELETE:" query will be printed and must be answered with a Y if the original file is to be
overlaid. Multiple transfers of incoming files can be performed provided that the remote Kermit
supports this facility.

The ↑Z, ↑G and CR commands are available for aborting or attempting restart a file transfer, as
described in the previous section.

File transfer between two Nicolets To effect direct file transfer by KERMIT between two NIC-
80s, a slightly different procedure is used. KERMIT is run on both machines, giving the com-
mands locally in each case. One Nicolet is put into receive mode with an R, and the S command
is then used to send files from the other one. Alternatively, it is equally easy, and somewhat
faster, to transfer files between any pair of Nicolet systems (NIC-80, NIC-1180 or NIC1180E)
by means of PNICL (see Appendix B).

Diagnostic facilities (B, I) . If KERMIT seems not to be functioning properly in relation to a par-
ticular external system, some simple facilities are available to help identify the problem. Entry of
a B invokes the standard NICBUG NIC-80 octal debugging programme, with its usual facilities
for placing breakpoints and for examining and modifying the contents of specified addresses.
Entry of an I toggles on (or off) the packet-indicator printing facility and also causes the last few
packets sent/received to be preserved for examination using NICBUG. The significances of the
packet indicator symbols are as follows -

ℓ – the packet received has the wrong length specified
s – a packet has been sent
S – the same packet has been re-sent
r – a good (uncorrupted) packet has been received
w – the packet received has the wrong sequence number
ℓ – the packet received has the wrong length specified
c – a checksum error in the received packet
n – a NAK (negative acknowledgement) has arrived
N – a NAK to the next packet has arrived
t – receiver has timed-out while awaiting a packet
T – a time-out occurred during reception of a packet

Because of the order in which KERMIT performs validity checks of an incoming packet, not all
relevant symbols will be printed: only one error is noted for each invalid/corrupted packet. Thus,
if the same packet arrives a second time, only a w will be printed showing that the sequence
number is wrong, regardless of whether or not the length and checksum of the packet are
correct; this will normally be followed by an S to indicate retransmission of the last packet.

With the I facility toggled on, the previous four outgoing packets are preserved at octal 200
intervals in addresses 102000-102777. The previous four incoming packets are preserved
within 103000-103777. They can be inspected by invocation of NICBUG under the B command
as described above, and it is then usually fairly obvious where the problem lies.

Help commands (H, N) . A command summary can be obtained by entry of an H, and some
succinct notes on operation are printed after an N. The latter are intended mainly to help any-
body who has acquired the NIC-80 KERMIT programme, but does not have a copy of these
instructions.

Convenience commands (L, U, E, K) . There are four commands that simply reproduce, auto-
matically, what the user could otherwise do manually in dumb terminal mode (see above). They
are particular to the system at Lancaster University, but could readily be modified for use under
other conditions. The L command effects an automatic login, once KERMIT has been config-
ured with the username and password by means of the U command. Note that the U command
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should be entered for a newly loaded copy of KERMIT. This ensures that, when the configured
version is re-stored (automatically) on the disk, the copy of FPP72 held initially at 102000 will
be intact. There are three stages to the login process. First, KERMIT makes contact with a
PAD, watching out for the “>" PAD prompt. Secondly, it calls up the Lancaster Sequent Sym-
metry, coded as lancs.cent1, and looks out for the “:" prompts corresponding to the standard
Unix “Username:" and “Password:" queries, which it answers appropriately. Thirdly, it watches
out for a “>" prompt from operating system showing that the login has been completed. The
K and E commands can be used to turn off (kill) or restore the echo from the remote system,
assuming that this is operating a full-duplex protocol, and that it is running under Unix.

Miscellaneous commands (M, Q, D, T) . Exit to the Nicolet Demon monitor can be effected by
entry of either a Q or an M. One can return to the programme again by typing GO 110000 to
the DEMON ∗ prompt. Entry of a D will cause the disk directory to be printed, without needing
to leave the programme. The T command is a toggle that activates or de-activates the RS232
B-input.

Hardware considerations . For optimal operation of KERMIT, a few minor changes may be
needed to the NIC-80, as described in Appendix E. In particular –

• The RS232 B-channel may need to be connected up and activated.
• The NIC-80’s RS232 UART chip can be operated at much higher speeds.
• The NIC-80’s ∼ 100 ms delay on detection of carriage returns (during which all RS232

circuitry is paralysed) should be eliminated.
With these small modifications, the Lancaster NIC-80s are normally operated with 19200 baud
set on their RS232 channels-A, and 9600 baud on their channels-B, and seem to be entirely
reliable at these speeds.

Emergencies . The usual BOOTS (see above) are held on page 114000 so, in emergency, the
processor can usually be stared at 115367 (NIC-298/299), 115414 (NIC-294/Diablo hard disk),
or 115436 (NICOLODEON paper tape on HSR). Alternatively, NICBUG may still be available at
114700 – a quicker way of entering code to test the system than by using the switches.

Construction of the executable programme from the sourcecode. There are two sections of
code to be assembled. The first, which provides the main part of the programme, is KERM**.A,
where the ** are two numeric digits representing the development number of the version in
use. The second, very short, piece of code is called BOOTS.A and provides the spare boot-
straps (for the disk-drives and high-speed paper tape reader) for use in emergencies. On a
NIC294 Diablo system, both KERM**.A and BOOTS.A are assembled with ASM, creating bi-
naries KERM**.C and BOOTS.C which can then be loaded with LOADER. The sequence of
commands for constructing NIC-80 KERMIT is then –
*RUN LOADER
@BOOTS.C:M
*STO BOOTS 115366 - 115476; 7600
(Once BOOTS has been assembled and stored, it of course need not be re-assembled when a
future version of KERMIT is being constructed).
*RUN LOADER
@KERM**.C:M
*LOA FPP72 102000
*LOA NICBUG 114632
*LOA BOOTS
*STO KERMIT 102000-117777;110000
where FPP72 is the standard Nicolet NIC-80 floating point package3 and NICBUG is the octal
debugging programme.1 To construct the programme on a NIC-298/299 floppy system, the
procedure is identical except that the code is assembled with FASM and loaded with FLOAD.
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The programme layout when KERMIT is in use as follows –

0 - 2777 I/O disk buffer (0-1777 for floppy)
3000 - 5777 disk directory (4000 - 5777 for floppy)
6000 - 7777 FPP72, DIRFUN overlays, DEMON monitor head
100000 - 100777 input buffer for dumb terminal mode
101000 - 101777 output buffer for dumb terminal mode
102000 - 102777 output packet construction
103000 - 103777 input packet construction
104000 - 105777 text for command summary, notes, etc
106000 - 107777 work routines for receive mode
110000 - 117777 command block, controlling routines
112000 - 113777 work routines for send, packet construction and deconstruction
114000 - 115777 filename parsing, NICBUG, BOOTS
116000 - 117777 disk routines, general utilities, arrow display

When first loaded, FPP72 occupies 102000 - 103577 but it is immediately moved to its operat-
ing position in 6000 - 7577 as soon as the programme starts; this arrangement allows KERMIT
to be stored conveniently as a single file.

Principles of operation . The heart of the dumb terminal emulator mode lies in a routine called
RSDUTY on page 110000. In effect, this simulates an interrupt system in software. It inspects,
in continuous rotation, each of the four RS232 flags and takes action accordingly: there are
no separate wait loops for the individual devices. The advantage of this approach is that it
is almost impossible to take the NIC-80 unawares, e.g. for it to miss an incoming B-channel
character while in a wait loop servicing the keyboard or printing a character. Note that, even at
9600 baud, the time taken for a character to arrive or be sent is ∼ 1 ms, which is a lot longer
than the NIC-80 instruction time of ∼ 4-6 µs. Thus, rather than waiting while a character is
being received/transmitted/entered/printed, it is much better for the NIC-80 to be doing other
things.

The packet send/receive modes also use RSDUTY. However, when receiving, the system
watches out for the arrival of a ↑A signifying the start of a packet, and then diverts the in-
coming data stream to the packet input buffer at 103000. The output packets are constructed
and sent from the buffer at 102000. The current output packet is preserved there until it has
been acknowledged, and so it can easily be re-sent if the first copy gets corrupted or lost.

Note that, although the appearance of the “@" prompt for filename entry seems at first sight to
imply use of the usual DCI routine, the routine actually employed is a more sophisticated one
held on page 114000, enabling the use of jokers/wildcards. It is a slightly modified version of
the keyboard input routine extracted from PNICL or NICL (see above).

APPENDIX E
Minor RS232 hardware modifications to NIC-80

Activating the the RS232 B-channel Many NIC-80s were shipped with only the A-channel
RS232 link operative. To activate the B channel, just complete the wiring in accordance with
the existing schematics –

(a) Add the extra UART and associated chips and small components to the RS232 PCB from
slot 11. If they are not already fitted, it will be found that empty positions are ready waiting
for them, and it is simply a matter of soldering them in.
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(b) Add the additional RS232 “D-socket” to the back of the NIC-80, a few inches above the
existing A-channel socket.

(c) Connect the socket to appropriate pins on the underside of slot 11, simply paralleling the
wiring of the A-channel in accordance with the schematics.

Speed-up for the NIC-80 RS232 board . Items (i)–(iv) in the information reproduced below
was kindly provided at no cost by Nicolet. The upgrade described was carried out on the six
Lancaster NIC-80s with complete success. thereby raised the maximum data rate from 2400
baud to 19200 baud, on both channels A and B.

(i) Modify Oscillator

1. Replace 422.4 KHz crystal with 6.7584 MHz.

2. Replace T16, T17, T18 (2N3302) with 2N5224.

3. Replace 100K resistor with 22K.

4. Replace 22K resistor with 3.3K.

5. Replace 2.2K resistor with 4.7K (this resistor is connected to T18).

6. Replace 0.1 micF capacitor with 500pF.

7. Replace 1000pF capacitor with 100pF.

8. Replace 47pF capacitor with 100pF.

(ii) Modification for 19.2K baud

1. Cut run between IC 18 pin 14 and IC 17 pin 3.

2. Piggy back new 7493 onto IC 18, soldering pins 2, 3, 5, 10 of new chip to the same
pins of IC 18. Leave other pins unconnected.

3. Jumper pins 1 and 12 of new chip.

4. Jumper IC 17 pin 3 to pin 14 of new chip.

5. Jumper IC 18 pin 14 to pin 11 of new chip.

6. Jumper unconnected switch positions.

7. Connect new baud rates to switches.

– a. Pin 1 of new chip has 19.2K.

– b. Pin 9 of new chip has 9.6K.

– c. Pin 8 of new chip has 4.8K.

(iii) Optional Modification for 110 baud

1. Cut run between IC 19 pin 14 and IC 16 pin 13.

2. Piggy back new 7493 onto IC 19, soldering pin 2, 3, 5, 10 of new chip to the same
pins of IC 19. Leave other pins unconnected.

3. Jumper pins 1 and 12 of new chip.

4. Jumper IC 16 pin 13 to pin 14 of new chip.

5. Jumper IC 19 pin 14 to pin 11 of new chip.

6. If this modification is not made the 110 switch position will no longer be correct.
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(iv) Parts list for (i)–(iii)

1. 6.7584 MHz crystal (one).

2. 2N5224 (three).

3. Resistors: 22K, 3.3K, 4.7K (one each).

4. Capacitors: 500pF (one), 100pF (two).

5. IC 7493 (two).

6. Jumper wire.

(v) Disablement of the Teletype delay . To disable the Teletype delay (see above), proceed
as follows –

(a) Cut the connection coming from pin 8 of IC 30.

(b) Connect pin 3 of IC 31 to earth.

This is not a Nicolet-approved option – but it works.
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